IELOHAMENTO DE PASTAGENS DE SEQUEIRO:

Estudo de técnicas alternativas, em olivais marginais, na região de Castelo Branco

José Pedro Pestana Fragoso de Almeida

CASTELO BRANCO, 1988
ESCOLA SUPERIOR DE MEDICINA VETERINÁRIA
ESTAÇÃO ZOOTÉCNICA NACIONAL

MELHORAMENTO DE PASTAGENS DE SEQUEIRO:
Estudo de técnicas alternativas, em olivais marginais, na região de Castelo Branco

José Pedro Pestana Fragoso de Almeida

Este trabalho foi expressamente elaborado como dissertação original para efeitos de obtenção de Mestrado em Produção Animal sendo apresentado na Escola Superior de Medicina Veterinária.

CASTELO BRANCO, 1988
À Jana
ÍNDICE

<table>
<thead>
<tr>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nota Prévia</td>
<td>v</td>
</tr>
<tr>
<td>Resumo</td>
<td>vi</td>
</tr>
<tr>
<td>1. Introdução</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Breve caracterização do sector primário na região de Castelo Branco</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Importância das pastagens mediterrânicas de sequeiro em regiões de solos ácidos</td>
<td>18</td>
</tr>
<tr>
<td>1.3. O ciclo produtivo das pastagens naturais de sequeiro</td>
<td>24</td>
</tr>
<tr>
<td>1.4. O melhoramento de pastagens naturais de sequeiro</td>
<td>28</td>
</tr>
<tr>
<td>1.4.1. O ecossistema "solo-planta-animal" como base do melhoramento</td>
<td>28</td>
</tr>
<tr>
<td>1.4.2. Fertilização</td>
<td>38</td>
</tr>
<tr>
<td>1.4.3. Sementeira de variedades comerciais</td>
<td>45</td>
</tr>
<tr>
<td>1.4.4. Manejo de pastoreio</td>
<td>48</td>
</tr>
<tr>
<td>1.4.5. A influência das técnicas de melhoramento na qualidade do pasto produzido</td>
<td>51</td>
</tr>
<tr>
<td>2. Parte experimental</td>
<td>55</td>
</tr>
<tr>
<td>2.1. Objectivos do trabalho experimental realizado</td>
<td>56</td>
</tr>
<tr>
<td>2.2. Material e métodos</td>
<td>56</td>
</tr>
<tr>
<td>2.2.1. Localização e condições edaf-climáticas</td>
<td>56</td>
</tr>
<tr>
<td>2.2.2. Delineamento experimental, tratamentos e técnicas culturais</td>
<td>58</td>
</tr>
<tr>
<td>2.2.3. Técnicas de amostragem e observações</td>
<td>59</td>
</tr>
<tr>
<td>2.2.4. Análises laboratoriais</td>
<td>62</td>
</tr>
<tr>
<td>2.2.5. Análise estatística</td>
<td>62</td>
</tr>
<tr>
<td>3. Resultados e discussão</td>
<td>64</td>
</tr>
<tr>
<td>3.1. Emergências</td>
<td>65</td>
</tr>
<tr>
<td>3.1.1. Resultados</td>
<td>65</td>
</tr>
<tr>
<td>3.1.2. Discussão</td>
<td>66</td>
</tr>
<tr>
<td>3.2. Composição botânica</td>
<td>66</td>
</tr>
<tr>
<td>Título</td>
<td>Pág.</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.2.1. Resultados</td>
<td>66</td>
</tr>
<tr>
<td>3.2.2. Discussão</td>
<td>68</td>
</tr>
<tr>
<td>3.3. Crescimento diário e produção de matéria seca</td>
<td>70</td>
</tr>
<tr>
<td>3.3.1. Resultados</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2. Discussão</td>
<td>73</td>
</tr>
<tr>
<td>3.4. Composição química do pasto</td>
<td>74</td>
</tr>
<tr>
<td>3.4.1. Resultados</td>
<td>74</td>
</tr>
<tr>
<td>3.4.2. Discussão</td>
<td>79</td>
</tr>
<tr>
<td>3.5. Produção de proteína bruta</td>
<td>81</td>
</tr>
<tr>
<td>3.5.1. Resultados</td>
<td>81</td>
</tr>
<tr>
<td>3.5.2. Discussão</td>
<td>83</td>
</tr>
<tr>
<td>3.6. Produção de matéria seca digestível</td>
<td>84</td>
</tr>
<tr>
<td>3.6.1. Resultados</td>
<td>84</td>
</tr>
<tr>
<td>3.6.2. Discussão</td>
<td>86</td>
</tr>
<tr>
<td>4. Conclusões</td>
<td>87</td>
</tr>
<tr>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
<td>91</td>
</tr>
<tr>
<td>ANEXO 1</td>
<td>103</td>
</tr>
<tr>
<td>Quadros de análises fitossociológicas de pastagens naturais na região de Castelo Branco</td>
<td>104</td>
</tr>
<tr>
<td>ANEXO 2</td>
<td>107</td>
</tr>
<tr>
<td>Descrição e caracterização do solo onde decorreu o ensaio</td>
<td>108</td>
</tr>
<tr>
<td>Quadros de temperatura e precipitação</td>
<td>110</td>
</tr>
<tr>
<td>ANEXO 3</td>
<td>111</td>
</tr>
<tr>
<td>Quadros de resultados e de análises de variância</td>
<td>112</td>
</tr>
</tbody>
</table>
NOTA PRÉVIA

O trabalho que a seguir se apresenta é resultado da colaboração entre a Escola Superior Agrária de Castelo Branco e a Associação de Produtores de Ovinos do Sul da Beira (OVIBEIRA), tendo sido delineado com o objectivo de dar resposta a um dos problemas levantados pelos associados daquela instituição. Claro que, as condicionantes inerentes ao estudo das pastagens de sequeiro não permitem conclusões tão rápidas, como por vezes a situação da agricultura exige. Porém, o importante é que a aproximação entre o agricultor e a investigação seja uma realidade, resultando numa resolução sólida e eficaz dos problemas que se levantam. Este espírito justifica todo o trabalho realizado e representa a esperança de desenvolvimento do sector primário na região e no país.

Todo este trabalho só foi possível graças à colaboração e ajuda de muitas pessoas. Os nossos primeiros agradecimentos dirijem-se à Escola Superior Agrária de Castelo Branco na pessoa do Prof. Vergílio António Pinto de Andrade pelos meios que nos puseram à disposição e pelo apoio constante prestado.

Ao Prof. Nuno T. Moreira, nosso orientador, que desde o início nos facultou tanto do seu tempo, para o trabalho exaustivo de orientação, sugestões, críticas, correções e revisão do manuscrito. A ele devemos também o elevado interesse com o qual sempre nos apoiou e a forma amiga com que sempre nos encorajou.

Ao Prof. Dr. Apolinário Vaz Portugal, nosso supervisor, pelo seu apoio incondicional desde o início deste trabalho e pelo tempo tão precioso que nos dedicou na revisão do manuscrito.

Ao Laboratório de Nutrição Animal da E.S.A. pelo trabalho desenvolvido. Aos alunos da E.S.A. que sempre se disseram a auxiliar o trabalho de campo.

A todos os nossos colegas que sempre nos auxiliaram directa ou indirec-
tamente.

À Sra. Maria Beatriz R. Ramos Luis, que dactilografou todo o manuscrito.
RESUMO

A região de Castelo Branco possui um clima do tipo termo-mediterrânico; os solos derivados de xistos e cornacas, granitos e arenitos, são delgados, ácidos e apresentam baixos teores em matéria orgânica e nutrientes assimiláveis.

O sector florestal ocupa mais de 50% da área do distrito, verificando-se uma predominância das espécies de crescimento rápido.

A olivicultura ocupa uma área aproximada de 35.000 hectares. A produtividade destes olivais é baixa, e a sua reconversão é dificultada pelas características edáficas.

A agricultura regional é, na generalidade, direcionada para a produção de pequenos ruminantes, com destaque para a ovinicultura. Embora não se verifique uma especialização bem marcada, a produção de leite (para posterior transformação em queijo) assume uma importância fundamental na rentabilidade das explorações, devido à sua elevada valorização económica. Os sistemas de exploração são caracterizados por um regime extensivo, com baixos encabeçamentos, recorrendo a pastoreio de pastagens naturais, com uma baixa produtividade por unidade de área.

A entrada de Portugal na C.E.E., devido a várias razões, obriga a um aumento da produtividade e a uma reestruturação do sector, de forma a que se torne mais competitivo e "agressivo" no seio de um mercado maior e mais exigente.

A produção pratense, sendo a base da alimentação dos ovinos e caprinos, é um dos campos básicos a estudar, indispensável ao desenvolvimento do sector. Por este facto, instalou-se um ensaio de técnicas de melhoramento de pastagens de sequeiro, sob coberto de olival, na Qtº N.S. Mércules da E.S.A.C.B.. Os tratamentos estabelecidos foram: A - pastagem semeada com mobilização do solo de forma a destruir a flora espontânea; B - pastagem semeada com mobiliza-

VII
ção mínima e densidade de sementeira reduzida (para complementar as espécies espontâneas existentes); C - pastagem natural fertilizada; D - pastagem natural (testemunha). O objectivo foi determinar qual a técnica de melhoramento das pastagens mais adaptada, e qual o seu efeito na quantidade e qualidade do pasto produzido.

A possibilidade de realizar este estudo numa situação de coberto de olival, permite analisar uma alternativa de utilização para áreas onde a reconversão seja difícil.

O solo onde foi instalado o ensaio, é de origem corneano-xistosa, pobre em matéria orgânica e ácido.

O ensaio foi delineado em blocos completos casualizados, com 3 repetições.

Encontraram-se diferenças significativas entre tratamentos na composição botânica a que cada um deu origem, nos crescimentos médios diários em determinadas fases do ano, nos teores de proteína bruta, na digestibilidade "in vitro" da MS. A partir do segundo ano observaram-se diferenças significativas entre tratamentos, na produção total de MS, de MS digestível e de PB, por hectare e ano.

Tanto do ponto de vista quantitativo como qualitativo, a partir do segundo ano, a pastagem semeada com mobilização "total" (A), apresentou valores superiores aos restantes tratamentos; a produtividade da pastagem semeada com mobilização mínima (B) não diferiu muito do tratamento "A" e do "C"; encontrou-se ainda uma resposta significativa da pastagem natural à fertilização (C). Concluiu-se ser conveniente a continuação deste trabalho, com algumas alterações na metodologia.
Verificou-se que os encabeçamentos praticados tradicionalmente na região, são determinados pelos crescimentos diários da pastagem natural durante o período de Inverno. Aponta-se assim, para a necessidade de estudar as possibilidades da suplementação invernal dos animais, que se conclui ser o factor prioritário e determinante do início da intensificação dos sistemas de produção.
Introdução geral
1.1. Breve caracterização do sector primário na região de Castelo Branco

O distrito de Castelo Branco engloba 11 concelhos, abrangendo uma área total de 662 660 ha (I.N.E., 1985b). Os seus concelhos são, normalmente, agrupados em três zonas diferenciadas por condições ecológicas particulares:

i. COVA DA BEIRA
 Concelho da Covilhã
 Concelho de Belmonte
 Concelho do Fundão
 Total dos 3 concelhos - 153 205 ha

ii. CAMPO ALBICASTRENSE E RAIA
 Concelho de Castelo Branco
 Concelho de Idanha-a-Nova
 Concelho de Penamacor
 Concelho de V. Velha de Rodão
 Total dos 4 concelhos - 358 946 ha

iii. PINHAL
 Concelho da Serreta
 Concelho de Proença-a-Nova
 Concelho de Oleiros
 Concelho de Vila de Rei
 Total dos 4 concelhos - 150 519 ha

O sector primário envolvia então, 12% da população residente, correspondendo a 32% da população activa (I.N.E., 1983).

Em relação ao clima, segundo a classificação proposta pela F.A.O.
para as regiões mediterrânicas, é do tipo termomediterrânico (HORTA e GOMES, 1983). Na fig. 1.1 apresenta-se o diagrama ombrotérmico da região. A precipitação média (1931 - 1960) é de cerca de 800 mm, apresentando valores efectivos entre Setembro e Maio - Junho; a temperatura média anual é de 15°C, regendo-se os valores mais baixos em Fevereiro e os mais elevados em Julho (HORTA e GOMES, 1983).

![Diagrama Ombrotérmico (1931-1960)](image)

INDICE XEROTÉRMICO X:111.4
X:N DE DIAS BIOLOGICAMENTE SECOS

CLIMA TERMOMEDITERRÂNEO
(CARTA BIOCLIMATICA DA F.A.O)

Fig. 1.1 Diagrama ombrotérmico da região de Castelo Branco (HORTA e GOMES, 1983).

Quanto aos solos, segundo ANTUNES (1981), considerando apenas as áreas do campo Albiacastrense, Raia e Pinhel, são assim caracterizados (em percentagem da área total):

MATERIAL ORIGINÁRIO:
- Xistos - 72%
- Granitos - 18%
- Arenitos - 10%

A, B e C - 13%
D e E - 86%
Área Social - 1%

ACIDEZ (pH em água):
Neutros a ligeiramente alcalinos - 3,1%
Pouco ácidos (pH 5,6 - 6,5) - 15,6%
Ácidos (pH 4,6 - 5,5) - 72,4%
Muito ácidos (pH 4,5) - 8,9%

TEORES EM MACRO NUTRIENTES ASSIMILÁVEIS:

i. Fósforo
Pobres - 70,5%
Médios - 17,4%
Altos - 12,1%

ii. Potássio
Pobres - 51,6%
Médios - 35,5%
Altos - 12,9%

Relativamente à forma de exploração das propriedades agrícolas, analisando os dados do I.N.E. (1985a), concluímos que o maior número é mantido por conta própria (84%); o arrendamento é bastante importante não pelo número (5%), mas pela área média ocupada por exploração (18,9 ha contra 6 ha no primeiro caso). Segue-se ao arrendamento, as formas de exploração mistas, 10% do total considerado, com uma área média de 16,2 ha.

De facto, a dimensão das explorações agrícolas da região, está de acordo com o quadro geral que se apresenta a nível do País. Como se pode ver na fig. 1.2, existe um predomínio de explorações com dimensões reduzidas abran-
ESTRUTURA DAS EXPLORAÇÕES AGRÍCOLAS

NUMERO DE EXPLORAÇÕES
POR CLASSE DE DIMENSÃO

A 37% <1 ha.
B 41% 1 a 4 ha.
C 19% 4 a 20 ha.
D 2% 20 a 50 ha.
E 1% >50 ha.

NUMERO DE EXPLORAÇÕES
POR ÁREA ABRANGIDA

A 3% <1 ha.
B 12% 1 a 4 ha.
C 22% 4 a 20 ha.
D 8% 20 a 50 ha.
E 5% 50 a 100 ha.
F 6% 100 a 200 ha.
G 12% 200 a 500 ha.
H 2% >500 ha.

Fig. 1.2 (INE, 1985)
gendo uma área importante, às quais corresponderá talvez na maior parte, uma forma de exploração por conta própria.

Quanto ao ordenamento da região (fig. 1.3), o sector florestal tem uma enorme importância, predominando sobretudo na "zona do Pinhal". A superfície com utilização exclusivamente florestal e "incultos" com o mesmo tipo de aproveitamento, abrangem conjuntamente cerca de 52% da área do distrito (inventário florestal de 1974, citado por I.N.E., 1985a). De salientar a enorme expansão de espécies de crescimento rápido (pinheiro e eucalipto, principalmente) que, em 1974 correspondiam a 72% da área florestal contra os 28% onde predominavam o sobreiro, a azinheira e o carvalho (fig. 1.3). Na área ocupada por estas últimas espécies referidas, conjuga-se o aproveitamento florestal com a produção pratense.

Segundo o I.N.E. (1985a) na superfície com utilização agrícola praticam-se principalmente culturas arvenses e forrageiras, correspondendo às pastagens permanentes apenas 3% da área considerada (fig. 1.3). O olival abrange cerca de 35 000 ha e não é utilizado tradicionalmente como cultura estreme, realizando-se um aproveitamento misto, com culturas forrageiras e pratenses sob o coberto.

Das culturas arvenses praticadas, são o centeio, trigo e a aveia aqueles com maior expressão; a cevada ocupa uma área reduzida e mais ou menos constante, nos últimos anos (fig. 1.4). Desde 1979-80 que se verificou uma redução nas áreas semeadas de centeio e trigo, e um aumento nas de aveia. Em nosso entender, ter-se-á verificado paralelamente uma maior utilização de variedades de aveia seleccionadas e certificadas, com maior aptidão forrageira (1).

A produtividade dos cereais referidos é baixa, não sofrendo evolução significativa durante o período 79/80 a 84/85 (fig. 1.5). Os valores médios de produção por ha apresentados na fig. 1.5 não devem ser tomados de uma forma

ORDENAMENTO AGRO-FLORESTAL DO DISTRITO DE CASTELO BRANCO

SUPERFÍCIE FLORESTAL

A 36% Florestal excluído
B 16% Incultos e esp. Flor.
C 40% Sup. Utilizada
D 8% Sup. não utilizada
Superfície Total: 667.660 ha.

SUPERFÍCIE UTILIZADA

A 43% Sup. arável limpa
B 16% Cult. permanentes
C 3% Past. permanentes
D 38% Sup. florestal
Superfície Total: 265.784 ha.

CULTURAS TEMPORÁRIAS E ÁREA DE OLIVAL

A 64% Arvores e For.
B 3% Outras cult. temp.
C 33% Olival
Superfície Total: 105.004 ha.

Fig. 1.3 (I.N.E, 1985)
Fig. 1.4 Evolução das áreas semeadas de culturas arvenses (I.N.E., 1980 a 1985a).

- absoluta pois, independentemente do seu método de cálculo, é usual realizar-se um certo auto-aprisionamento em grãos.

São praticadas na região outras culturas dentro das quais é de destacar o tabaco e o milho nas áreas de regaço, e o feijão "frade" como cobertura de alqueive em sequeiro nas zonas "mais frescas de baixa". Como alternativa ao feijão, semeia-se nas mesmas condições milho, denominando-se então a cultura por "milharada". De referir ainda a cultura de tremocilha (Lupinus luteus L.) utilizada em consociações com centeio ou aveia para corte e fenoção, ou estremo para pastoreio directo após a dessecção das plantas.

A produção praticada na região, pode agrupar-se, segundo a duração e natureza em 3 regimes: Pastagens de sequeiro temporários, pastagens de sequeiro permanentes e pastagens de regaço.

A produção em regaço encontra-se limitada apenas a pequenas áreas,
Fig. 1.5 Evolução da produtividade das culturas arvenses (I.N.E., 1980 a 1985).

principalmente no perímetro de rega de Idanha-a-Nova.

A produção em regime de sequeiro pode ainda ser subdividida em duas situações — sem e com coberto arbóreo. Em ambos os casos, as pastagens são constituídas essencialmente, por espécies pratenses anuais.

As pastagens de sequeiro temporárias estão integradas em rotações de culturas com cereais, e constituem o que normalmente se designa por "Pou-sios". As rotações têm uma duração de 3 - 5 anos, tendo porém uma tendência para aumentar; este facto é confirmado pela já referida redução da área semeada de cereais (fig. 1.4).

As rotações praticadas são as seguintes:

(Pastagem + Alqueive) — Cereal — Pastagem — Pastagem

(Pastagem + Alqueive) — Cereal — Forragem — Pastagem — Pastagem
O alqueive inicia-se com uma lavoura realizada na Primavera, tendo como objectivo principal a destruição das espécies presentes nos "Pousios", para diminuir a competição destas com a cultura a instalar posteriormente — cereal.

A cultura indicada como "Forragem" pode ser um cereal estreme ou consociado com uma leguminosa (normalmente a tremóculha, em alguns casos mais raros a ervilha) para corte e conservação. O método de conservação utilizado é a fenoção, realizada normalmente tarde, dando origem por esse facto a fenos de qualidade inferior.

Como particularidade é de referir o caso dos montados de sobro e azinho, onde é usual "interromper" o ciclo da pastagem natural com um alqueive, seguido de uma cultura outonal: Cereal ou tremóculha. Este procedimento, no entender dos agricultores, tem dois objectivos: combate contra os matos (sargassais) e regeneração das pastagens. É realizado cada 3 - 6 anos. Nos arenitos a sul de Castelo Branco, esta prática tem vindo a ser realizada com uma frequência cada vez maior, verificando-se aí em alguns casos, de 3 em 3 anos. De facto num estudo efectuado por BELIZ e ALMEIDA (não publicado), verificou-se que o alqueive de Primavera tal como é realizado e com a crescente substituição da lavoura com charrua por grades pesadas, destrói a vegetação herbácea existente e mesmo não acontecendo completamente à vegetação arbustiva (principalmente nas espécies Cistus crispus L. e Cistus salvifolius L.). Dessa forma, os matos livres de qualquer competição pelos factores de crescimento, podem desenvolver-se e expandir-se, agravando-se o problema pouco a pouco a cada alqueive realizado.

Ainda relativamente a pastagens sob coberto é de referir o caso do olival. Como já foi referido, existe no distrito uma extensa área de olival.
Porém, as condições edáficas constituem um impedimento à reconversão destes olivais antigos, para serem explorados como cultura estreme. Tradicionalmente estas áreas são utilizadas para produção de tronco, verificando-se em alguns casos a prática de rotações de 4 - 6 anos como uma cultura forrageira para corte e conservação. Desta forma é incrementada a produtividade daquelas áreas.

As pastagens de sequeiro perenizantes encontram-se nas áreas onde a mecanização é difícil, devido ao declive e/ou pequena profundidade do solo e afloramentos rochosos.

Quanto ao melhoramento das pastagens de sequeiro que se tem realizado na região, resume-se à sementeira com misturas de variedades comerciais à base de trevos subterrâneos, segundo a tecnologia aconselhada por SALGUEIRO (1970, 1982, 1984), CRESPO (1975) e MOREIRA (1980).

É difícil estimar a área semeada. Segundo o I.N.E. (1985a) semearam-se 710 ha entre 1980 e 1985 (fig. 1.6). Porém estas cifras correspondem apenas à área beneficiada através da Direcção Geral do Fomento Florestal, e inclui áreas de regadio. Porém, os maus resultados obtidos e o alto custo que este método implica, tem levado a uma diminuição das áreas beneficiadas. Se observarmos os quantitativos de sementes importadas pela E.P.A.C. (I.N.E., 1980 a 1985a) verificamos que até 1981 aumentaram, sofrendo depois uma redução drástica (fig. 1.7). De facto essa redução coincide com os anos de seca a partir dos quais, devido ao aumento dos maus resultados obtidos, a procura de sementes diminuiu.

As razões possíveis para estes "maus resultados" serão estudadas posteriormente.

Paralelamente, verifica-se uma quase inexistência de investigação que forneça aos agricultores alternativas economicamente rentáveis. Devido,
principalmente, aos factos expostos, as pastagens de sequeiro são constituídas na sua maior parte por espécies espontâneas, sem se realizar nenhuma prática cultural. Embora certos autores refiram que a produtividade e características nutritivas destas espécies são baixas (SALGUEIRO, 1970, 1982 e 1984; CRESPO, 1975a e b, 1981) o que é facto é que não existem dados de base que permitam sustentar estas afirmações.

Para dar uma ideia da constituição da flora destas pastagens, apresentamos no quadro A1.1 (Anexo 1) alguns inventários fitossociológicos realizados na região em 1986 e 1987 por BELIZ e ALMEIDA (dados não publicados). Como se pode observar, assinala-se a presença de algumas espécies com elevado interesse
forrageiro pertencentes a diversas famílias.

O manejo do pastoreio é realizado segundo os moldes tradicionais por pastores, em regime extensivo com baixos encabeçamentos, (quadro 1.1) sendo o recurso à utilização de cercas bastante reduzido.

Os sistemas de produção animal encontram-se sobretudo direccionados para a produção de pequenos ruminantes, destacando-se a Ovinicultura.

Quadro 1.1. Encabeçamentos médicos em alguns concelhos do distrito de Castelo Branco. Fonte: Inquérito aos associados da OVIBERIA (dados não publicados)

<table>
<thead>
<tr>
<th>Concelho</th>
<th>Equiv. OVINOS.ha(^{-1}). ano(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castelo Branco</td>
<td>1,70</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>1,06</td>
</tr>
<tr>
<td>Penamacor</td>
<td>1,00</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>0,82</td>
</tr>
</tbody>
</table>

ESPÉCIE OVINA

Raça Merino da Beira Baixa

É a que possui um efectivo maior na região. SOBRAL (1986) estima cerca de 170 000 animais enquanto que SOBRAL et al., (1987) apenas 100 000 animais, referindo ter-se verificado um decréscimo a partir de 1955. É explorada a tripla aptidão; a participação de cada produto para o rendimento bruto cifra-se em 48% a 55% do leite, 40% a 46% da carne e 5% a 6% de lã (SOBRAL et al., 1987). De facto a elevada valorização económica do leite na região, para posterior transformação em queijo, aliada aos crescimentos reduzidos e má conformação da carcaça dos borregos (ANDRADE et al., 1987), confere uma importância notável na actualidade, à produção leiteira. Apesar dos factos apresentados, a produção da carne é importante, obtendo uma maior valorização no mercado pelo "borrego de canasta".

Relativamente aos níveis de produção leiteira das ovelhas, embora não havendo concordância absoluta entre os autores, os valores que referem são muito próximos, variando entre 50 e 65 litros por cada lactação de 150 a 180 dias (SOBRAL, 1986; SOBRAL et al., 1987; ANDRADE et al., 1987; PINTO DE ANDRADE et al., 1987).
Raça Churra do Campo

Explora-se principalmente para produção de leite pois os borregos exibem crescimentos muito reduzidos e a lã sendo churra, tem um valor inferior.

Os níveis de produção leiteira das ovelhas situam-se entre os 30 e 50 litros por lactação (SOBRAL, 1986; SOBRAL et al., 1987).

ESPÉCIE CAPRINA

Raça Charnequeira

Contrariamente ao ecótipo Alentejano, a Beiroa é explorada principalmente para produção leiteira, exibindo uma razoável vocação. As médias de produção, após o desmame, situam-se entre 220 e 280 litros num período de 200 a 230 dias (SOBRAL et al., 1987). O índice de prolificidade é estimado pelos mesmos autores entre 130% e 150%.

O regime de exploração tanto dos ovinos como dos caprinos é definido pelo seu caráter extensivo (ANDRADE et al., 1987; SOBRAL et al., 1987) sendo os animais mantidos em pastoreio durante todo o ano.

Os níveis de suplementação invernal com alimentos conservados são baixos, realizando-se principalmente nos anos mais adversos. Durante o Verão e princípio de Outono é tradição suplementar, inicialmente com tremocolha e posteriormente com feijão "frade" (resíduos da cultura), através do pastoreio directo.

Em grande parte dos casos, a não existência de instalações leva a
que os animais sejam alojados ao ar livre, durante todo o ano, em "bordo". Com a mudança diária do "bordo", os agricultores procuram realizar as estrumanações, com o que evitam, no seu entender, a prática de adubação das culturas a instalar no ano seguinte, constituindo também uma medida sanitária de prevenção contra a peveira dos animais.

Para terminar esta breve caracterização é necessário analisar a situação actual de rentabilidade das empresas.

A entrada de Portugal na Comunidade Europeia obriga a que o sector se desenvolva no sentido de se tornar mais competitivo. Dentro da política delineada a nível nacional e com importância fundamental para a região, a ovinicultura e caprinicultura foram considerados "pólos - chave" de desenvolvimento.

Como era já esperado, certos preços iriam sofrer uma baixa (ou aumentos não proporcionais aos valores da inflação), sendo assim ajustados às condições que o mercado comunitário exige. Os preços pagos ao produtor pelo borrego enquadram-se dessa política (HORTA, 1983) e na região, embora no período 1983-85 tenham sido superiores devido provavelmente a um processo especulativo e a uma procura de reprodutores elevada, o que é facto é que posteriormente diminuíram. Em relação ao preço do leite, embora as estatísticas não fornecem elementos, julgamos que sofreram uma evolução semelhante, mas não tão "drástica".

Para uma visualização mais fácil da situação que referimos, determinamos a relação entre o preço médio ao produtor por Kg (P.V.) de borrego e 3
factores de produção de natureza diferente (100 Kg de superfosfato 18%, lavoura de 1 ha a preços de aluguer e o salário médio mensal de um pastor) verificados na região entre 1980 e 1987 (I.N.E., 1980 a 1985a; SIMA, 1987). Os resultados são apresentados graficamente na fig. 1.8. Exceptuando-se o período de 1983-85, verifica-se a necessidade de um maior número de Kg de borrego para remunerar o custo dos factores de produção. Isto poderia ser contrabalançado por um aumento da produção facto que, embora as estatísticas disponíveis não confirmem, é difícil de comprovar neste momento.

De qualquer forma, perante este quadro geral seria de esperar uma resposta da produção. Porém, podemos talvez arriscar a afirmar que esta "resposta" tem sido bastante mais lenta que a evolução das condições de mercado, levando o sector a uma instabilidade característica de um período de transição.

Do ponto de vista da rentabilização das explorações, a solução pode estar, entre outros, em um ou vários dos pontos seguintes:

- Aumento da produtividade do trabalho (modificação do manejo dos animais, instalação de cercas, etc.);
- Aumento da produtividade biológica por animal e/ou por unidade de superfície (melhoramento da alimentação, melhoramento genético, aumento (?) dos encabeçamentos, etc.);
- Sanidade.

Os aspectos atrás referidos interligam-se (por exemplo, o aumento da produtividade biológica por animal poderá levar a um aumento da produtividade do trabalho) e cada um integra por sua vez, outros não referidos.

Claro está, que para tudo isto se verificar é necessário um suporte de investigação que forneça ao agricultor os elementos base onde se possa apoiar.
Fig. 1.8 Remuneração de alguns factores de produção (I.M.E., 1980 a 1985; S.I.M.A., 1987).

Sendo as pastagens naturais de sequeiro, na região, a base da alimentação dos pequenos ruminantes, o estudo das suas características e das possibilidades de melhoramento é uma contribuição importante e indispensável para o aumento da rentabilidade económica das explorações.

1.2. Importância das pastagens mediterrânicas de sequeiro em regiões de solos ácidos

As regiões mediterrânicas de solos ácidos possuem características particulares que condicionam a produção vegetal, nomeadamente:

- A distribuição da precipitação ao longo do ano, que se concentra no período invernal (ASCHMAN, 1973); a variabilidade interanual que se verifica,
na data de início e termo do período chuvoso e no quantitativo total de pluviosidade (GONZALEZ et al., 1984);

- O baixo pH destes solos, que pode provocar a imobilização de certos nutrientes (DIAS CORREIA, 1983), afectando as culturas em maior ou menor grau consoante as suas exigências; a carência de certos micronutrientes (SEQUEIRA et al., 1980; CRESPO, 1982); a toxicidade provocada pelo alumínio e manganésio pode constituir também um factor condicionante (SEQUEIRA et al., 1980; HORSNELL, 1985a e 1985b);

- Na região de Castelo Branco, o facto de se verificar uma reduzida profundidade do solo, os efeitos referidos são ainda mais acentuados. Durante o inverno, encharcam rapidamente podendo provocar, entre outros problemas, asfixia radicular. No fim da Primavera, com uma capacidade reduzida de armazenagem de água, rapidamente se dessecam. Estas características aliadas ao relevo irregular da região, fazem também com que sejam facilmente erosionáveis.

Hoje em dia, as comunidades pratenses destas regiões da Península Ibérica são contituídas por numerosas plantas anuais, associadas com formações de Quercus-perennifoliis acompanhadas de Rhannus, Olea etc. (MONTYA, 1983), e são resultantes da destruição da floresta existente no climax mediterrânico da azinheira (BELIZ, 1980).

De facto, exceptuando algumas plantas pratenses vivazes com uma fisiologia que lhes permite sobreviver às estações secas, são as anuais aquelas que melhor se adaptam às condições do clima mediterrânico (MOREIRA, 1980), maximizando a utilização dos recursos disponíveis e integrando-se num sistema ecológico bem definido.

Assim, podem-se considerar duas fases neste tipo de pastagens: Fase de pasto "verde", que corresponde à estação húmida, e fase do pasto "seco",
que corresponde à estação sem pluviosidade efectiva (ROSSSITER, 1966). No início da época das chuvas as plantas germinam, realizam o ciclo vegetativo até à Primavera, morrendo após a formação das sementes; durante o final da Primavera - Verão estão secas, prevalecendo os seus resíduos. Desta forma, podemos afirmar grosso modo, que a persistência e a produção de pasto depende da quantidade de semente produzida no ciclo anterior (ROSSSITER, 1966; HEADY, 1970; CARTER, 1984; OLEA, PAREDES e VERDASCO, 1985; OLEA et al., 1987).

Dentro do grupo de plantas anuais, é de referir as leguminosas de ressementeira natural e de autossementeira, pois possuem um papel fundamental dentro do ecossistema Solo-Planta-Animal destas regiões (SALGUEIRO, 1970; CRESPO, 1980 e 1982).

Estas pastagens, devido ao facto de serem polifitas (HYCKA, 1984) possuem características importantes. Nomeadamente:

1) Capacidade de adaptação espacial e temporal (MONGOYA, 1982 cit. por OLEA, PAREDES e VERDASCO, 1985), através da grande variabilidade tanto de exigências como na duração dos ciclos vegetativos das plantas (CRESPO e ROMANO, 1982) e através da produção de sementes duras (1) pelas leguminosas (COCKS, MATHISON e CRAWFORD, 1980; CRESPO, 1975b). Adaptação "espacial" porque a variabilidade citada permite que cada nicho ecológico seja ocupado pelas espécies mais adaptadas às condições particulares (HEADY, 1970; CARTER, 1984); adaptação "temporal" não só porque as características citadas anteriormente permitem assegurar a produção de erva fazendo face às irregularidades da precipitação, mas também porque a reserva de sementes duras que ficam no solo garante a germinação e persistência das plantas, após anos secos em que não se verifique produção de semente por causa dos déficitos hídricos (CRESPO, 1982; MONGOLAY, 1983; CARTER, 1984).

(1) Esta característica é devida à impermeabilidade e grossura da testa e pela obstrução e fecho do micrópilo, que impedem a entrada de água (MOSLELA e RATERRA, 1984) e oxigénio (DIAS CORREIA, 1983).
2) Maior aproveitamento da radiação solar, comparativamente a qualquer cultura monofita (HYCKA, 1984). Se as plantas têm o mesmo porte e a mesma altura, a superfície de intercepção da luz é paralela à superfície do solo; no caso de existirem muitas espécies com diferentes portes e alturas, a superfície de intercepção é irregular e superior ao primeiro caso (LARCHER, 1976).

3) Maior aproveitamento do solo (WATSON, 1963) devido às diferenças morfológicas entre as espécies.

4) Menor competição pelos factores de crescimento (ROSSITER, 1966; LARCHER, 1976) não só devido às características citadas em 2) e 3), mas também por causa das exigências particulares de cada espécie presente.

Por outro lado, as leguminosas presentes na flora destas pastagens, conferem-lhes um outro tipo de vantagens, devido à fixação do azoto atmosférico, através da relação simbiótica que se estabelece nas raízes daquelas espécies com o *Rhizobium*.

WATSON (1983) refere que por cada 100 Kg de azoto contido no trevo subterrâneo, 62 Kg são provenientes desta simbiose; MANNETJE, O’CONNOR e BURT (1980) encontraram valores desde 47 a 590 Kg de azoto por hectare e ano; COCKS, MATHISON e CRAWFORD (1980) determinaram 239 a 336 Kg de azoto por hectare e ano consoante a intensidade de pastoreio média ou alta, respectivamente, e referem que a variação é devida a alterações da composição botânica.

De facto, muitos autores estudaram esta relação leguminosa-*Rhizobium*, referindo as seguintes vantagens:

2) A nível nacional, a substituição, ainda que parcial, de adubos azotados por fosfatados e potássicos necessários a estas pastagens (VILLAX e ALVES, 1954; ALVES, 1968, SALGUEIRO, 1972; JIMENEZ e MARTINEZ, 1986) permite
uma economia de energia fóssil (CRESPO, 1980; BEDMAR e OLIVARES, 1985). Segundo SCHUFFELEN (1975, cit. por CRESPO, 1982) são necessários 80 MJ para produzir 1 Kg de N, enquanto que os adubos fosfatados e potássicos requerem respectivamente 12 MJ/Kg P₂O₅ e 8 MJ/Kg K₂O; CRESPO e ROMANO (1985) referem que são empregues mais de 2 litros de gasóleo para produzir 1 Kg de adubo azotado.

Segundo HUNT et al., (1971) o adubo azotado aplicado a prados de gramíneas, pode permitir um aumento médio da produtividade animal em cerca de 100 Kg de carne ou 2000 Kg de leite, por cada 100 Kg N/ha. Porém, o mesmo autor chama a atenção para que, devido à crise energética, o uso "prodigioso" dos adubos azotados seja restringido, apontando as leguminosas como uma alternativa.

3) Incremento da produção e do conteúdo proteico do pasto (BEDMAR e OLIVARES, 1985).

4) Incremento dos níveis de azoto no solo e melhoramento das suas características físicas e químicas (WATSON, 1963; SALGUEIRO, 1972; CRESPO, 1975a; CRESPO e ROMANO, 1985).

Como se verifica um aumento da produção de pasto, os resíduos tanto da parte aérea como da parte subterrânea das plantas são maiores. Por outro lado, a razão C/N do solo torna-se mais favorável à actividade biológica dos microorganismos do solo (GACHON, RTCOU e GRUNER, 1979; DIAS CORREIA, 1983) permitindo a decomposição dos resíduos orgânicos, tendo como consequência final
un melhoramento da fertilidade do solo, das suas características físicas: estrutura, porosidade, etc. (DIAS CORREIA, 1983; BEDMAR e OLIVARES, 1985).

6) Diminuição dos níveis de poluição provocada pela utilização dos adubos azotados (DIAS CORREIA, 1983; BEDMAR e OLIVARES, 1985).

Uma parte do azoto aplicado ao solo através dos adubos convencionais, perde-se por lavagem, devido às chuvas, podendo provocar um aumento de nitratos solúveis em águas potáveis. Outra parte sofre uma desnitrificação resultando daí compostos mais reduzidos, inclusivamente azoto molecular que se liberta para a atmosfera. Este segundo processo pode dar origem a nitrosaminas e óxidos (DIAS CORREIA, 1983), ambos bastante perigosos para o meio ambiente (BEDMAR e OLIVARES, 1985).

Estão referidas as causas principais da importância das pastagens de sequeiro nas regiões mediterrânicas de solos ácidos. De facto, a nível nacional, elas constituem a cultura que melhor se adapta a uma área superior a 5 milhões de hectares (CRESPO, 1975b), constituindo hoje a base de alimentação de pequenos e grandes ruminantes. Mas, um sistema de produção é um conjunto integrado de diversos componentes que interactuam, devendo-se por isso, adaptar a capacidade produtiva da pastagem à forma mais económica e competitiva de a utilizar (VAZ PORTUGAL, 1980) numa perspectiva de conservação dos recursos. "(...) O modelo nasce como consequência da avaliação de todas estas acções conjugadas (...)" (VAZ PORTUGAL, 1980).
1.3. O ciclo produtivo das pastagens naturais de sequeiro

Já foi referido anteriormente, que cada ciclo produtivo das pastagens mediterrânicas à base de espécies anuais, podia ser dividido em dois períodos: fase de crescimento / maturação e a fase do pasto seco que termina com a germinação das novas plantas. Essencialmente, é durante a primeira fase que a pastagem exibe o seu potencial produtivo e assegura a sua persistência através da produção de semente. Porém, durante esta fase a produção de biomassa é afectada por vários factores: solo e clima; competição entre as plantas; consequências da acção antropica; potencial genético das plantas, etc.

O nível de fertilidade e as características dos solos, dão origem a composições botânicas diferentes (OLEA, PAREDES e VERDASCO, 1985), sendo a produção da pastagem condicionada pelas potencialidades genéticas das espécies que se estabelecem. Por outro lado, o binómio "profundidade - capacidade de armazenamento de água" determina a duração do período com crescimento vegetativo na Primavera (OLEA, PAREDES e VERDASCO, 1985), influenciando também a produção anual de semente (OLEA, PAREDES e VERDASCO, 1986).

O clima exerce os seus efeitos a dois níveis: dentro de cada ano com variações "normais" e entre anos com uma variabilidade "não normal" característica desta região, como já foi referido.

No início da época das chuvas com temperaturas ainda relativamente altas dá-se a germinação das sementes. Se as chuvas começam relativamente cedo, ou mantendo-se as temperaturas altas, o primeiro crescimento é elevado (ROSSITER, 1966; CRESPO, 1975a, CRESPO, 1975b; MOREIRA, 1980; CRESPO, 1981; GONZALEZ et al., 1984). Se o início da época das chuvas é retardado, a germinação das plantas e o seu crescimento posterior são afectados: OLEA, PAREDES e VERDASCO (1985) determinaram uma correlação alta entre a data relativa de início das chuvas
e o número da plantas nascidas por m²; AZEVEDO e MOREIRA (1985) encontraram igualmente uma correlação alta, com a produção outrora. Também a composição botânica da pastagem é diferente (ROSSITER, 1966; SCHOCK et al., 1984) dando mesmo origem a expressões populares bem conhecidas, como por exemplo "um ano de serradela".

Com a diminuição das temperaturas médias e dos níveis de radiação, os crescimentos diários são afectados. Uma das vantagens das regiões mediterrânicas comparativamente a outras, é que os crescimentos não chegam a ser nulos, mesmo em pleno inverno (CRESPO, 1975a, 1975b, 1981 e 1982; GONZALEZ et al.,

A partir do início da Primavera, com o aumento da temperatura e radiação, dá-se um incremento brusco nos crescimentos diários, verificando-se nesta altura o máximo da produtividade diária. O fim das chuvas e o quantitativo de precipitação verificado nesse período, condicionarão a produção de semente (OLEA, PAREDES e VERDASCO, 1985). Assim, produzirão todas as espécies, ou só as semi-tardias e precoces, ou só as precoces dependendo do momento do fim das chuvas ser mais ou menos tardio, respectivamente (ROSSITER, 1966; QUINLIVAN, 1978; CARTER, 1984). OLEA, PAREDES e VERDASCO (1985) determinaram a regressão entre a produção de semente e a precipitação de Primavera, referindo o valor de 11 Kg ha⁻¹ / 10 mm, para pastagens semeadas com trevo subterrâneo.

Durante o Verão, o número de dias em que se verificam temperaturas ao nível do solo, entre os 50°C e 60°C, determina a quantidade de sementes de leguminosas que perde a dureza (QUINLIVAN, 1978; OLEA e VERDASCO, 1986); e que germinará no ciclo seguinte.

Na fig. 1.9 apresentam-se as curvas de crescimento diário segundo CRESPO (1981), comparando este tipo (segueiro) com uma pastagem de regadio e
com uma pastagem à base de espécies vivazes em Inglaterra.

Porém, além da influência citada, dos factores edáficos e climáticos, há que considerar que estas pastagens são uma comunidade de plantas que estabelecem entre si relações ecológicas bem definidas (BELIZ, 1959 e 1966; MONTOYA, 1983). A acumulação da biomassa de uma população deste tipo é uma curva sigmoidal (fig. 1.10) que tende para o nível de capacidade ("carrying capacity") do habitat (HUTCHINGS e BUDD, 1981). Qualquer crescimento, após ter sido atingido o nível que o habitat suporta, será realizado a custa de biomassa já presente (HUTCHINGS e BUDD, 1981).

HYCKA (1984) denomina a primeira fase evolutiva (correspondente a acréscimos crescentes de biomassa por unidade de tempo) por crescimento autoacelerado, e a segunda fase (correspondente aos acréscimos decrescentes por unidade de tempo) por crescimento autoinibido, referindo que durante a primeira as
plantas realizam o ciclo vegetativo e durante a segunda o ciclo reprodutivo.

Após a germinação, à medida que o tamanho das plantas aumenta, começam a interferir no crescimento umas das outras, através da competição pelos recursos essenciais, e o máximo individual de crescimento não é mantido (Hutchings e Budd, 1981). Sob estas condições de competição a forma e o tamanho das plantas pode-se modificar sem levar à morte da planta; Hutchings e Budd (1981) denominam estas modificações por respostas "plásticas", enquanto que Norman (1960), Mannette, O'connor e Burt (1980) denominam-as por capacidade de adquirir "habitos de crescimento", referindo que estas respostas podem ser induzidas pela intensidade e frequência do pastoreio.

Quanto maior é densidade de plantas menor é o seu peso médio individual, sendo esta relação mais exuberante, com o avanço do crescimento da comunidade (fig. 1.11).

As relações de competição que se estabelecem numa comunidade de plan-
Fig. 1.11 Modificação das relações entre peso médio (MS) por planta e densidade de plantas, em várias fases após a germinação. Adaptado de HUTCHINGS e BUDD (1981).

tas pratenses podem ser influenciadas pela acção antrópica, seja de uma forma directa (por exemplo, sementeira de variedades comerciais) ou indirecta (intensidade e frequência do pastoreio, adubações, etc.). A acção do homem surge assim como "reguladora" daquela competição.

Como resultado final da competição, o número de plantas sobreviventes condicionará então a produção por unidade de área (fig. 1.12), tanto de matéria verde como de semente (HUTCHINGS e BUDD, 1981).

1.4. O melhoramento de pastagens naturais de sequeiro

1.4.1. O ecossistema "solo-planta-animal" como base do melhoramento

"Ecossistema" pode definir-se como uma unidade funcional organizada, resultante da combinação de todos os factores do ambiente, vivos ou inertes, orgânicos ou minerais (TANSLEY, 1935, cit por GACHON, 1979). Nele, considera-
Fig. 1.12 Relação entre a densidade de plantas e produção esperada por unidade de área para o peso total das plantas (linha sólida) e para produtos derivados do crescimento reprodutivo (linha a tracejado), adaptado de HUTCHINGS e BUDD (1981).

- se um agrupamento de seres vivos independentes (Biocenosis), que se reproduzem permanentemente dentro de uma área geográfica (Biotipo), que é submetida a condições físicas e químicas relativamente homogêneas e constantes. Tanto a Biocenosis como o Biotipo reagem e actuam um sobre o outro, sendo as evoluções do primeiro, resultantes do efeito das variações do segundo; estas são induzidas por ele mesmo ou pela ação do homem (GACHON, RTCOU e GRUNER, 1979). Esta é a lei básica que regem o funcionamento do ecossistema Solo - Planta - Animal. Este desvia-se do modelo TANSLEY, porque os animais podem não se reproduzir nem se alimentar no interior do Biotipo (considerando-o como a área da pastagem), e porque o homem como principal consumidor exterior ao sistema, faz com que seja um ecossistema aberto (GACHON, RTCOU e GRUNER, 1979).
Segundo o ponto de vista da ecologia pastoral, podemos definir uma pastagem como uma associação complexa de espécies, que reflecte a competição dos seus componentes no espaço e no tempo, pelos factores de crescimento (BELIZ, 1966; MONTSERRAT, 1977; MONTOYA, 1983).

Para explicar as relações que se estabelecem entre os diferentes níveis tróficos e, dentro deles, entre os seus componentes, tomámos como base o ciclo de carbono, segundo um modelo apresentado por GACHON, RICOU e GRUNER (1979), que se apresenta na fig. 1.13.

Assim, citando aqueles autores, considerando:
100 = Fluxo anual "líquido" de carbono assimilado e fixado nas partes aéreas da vegetação pratense;
X = Fluxo complementar correspondente à elaboração de fitomassa das raízes.

A distribuição do carbono fixado pela parte aérea far-se-á da forma seguinte:
- 50% a 80% para a alimentação dos animais (sendo 2/3 "queimados" pela respiração e expelidos sob a forma de CO₂);
- Uma pequena fração é consumida por outros animais (não domésticos);
- Cerca de 30% não é consumido, sendo devolvido ao solo. Nas primeiras fases de decomposição, continua a verificar-se a respiração, através da qual se liberta uma pequena quantidade sob a forma de CO₂.

As dejeções, o material orgânico devolvido ao solo e os resíduos das raízes, são utilizados por organismos responsáveis pela decomposição, que os mineralizam com maior ou menor velocidade (segundo a natureza química), ou que elaboram a partir deles compostos húmicos (DIAS CORREIA, 1983).

O equilíbrio deste modelo pode ser alterado por acção do homem. A forma mais fácil de o fazer é, segundo muitos autores, através da intensidade de
pastoreio\(^{(1)}\). Porém, as opiniões dividem-se: BELIZ (1966), MONTSERRAT (1977) e BELIZ (1980) referem que o estado actual de degradação das pastagens da

![Diagrama esquemático](image)

Fig. 1.13 Ciclo esquemático do carbono no ecossistema "solo-planta-animal" (adaptado de GACHON, RICOU e GRUNER, 1979).

\(^{(1)}\) Entenda-se aqui "intensidade de pastoreio", por encabeçamento isto é, número médio de animais, por unidade de área, que utilizam a pastagem anualmente.

AUSÊNCIA DE PASTOREIO

A maior parte da massa vegetal aérea é devolvida ao solo; este material orgânico é rico em carbono e em elementos tróficos (N, P e catiôes) (DIAS CORREIA, 1983). Assim, a matéria orgânica estará pouco ou nada degradada ao chegar ao solo, e pobre em substâncias minerais, contrariamente às dejeções provenientes dos animais.

A relação C/N no solo aumenta e, consequentemente, diminui a atividade biológica, nos primeiros estádios de evolução da vegetação. A matéria orgânica não degradada acumula-se sobre o solo, libertando muito lentamente uma reduzida quantidade de nutrientes. Sob estas condições as plantas com possibilidade de explorar camadas mais profundas do solo, serão detentoras de maior capacidade de sobrevivência (MONTSERRAT, 1977). De facto, a vegetação das áreas isentas de pastoreio, evolui no sentido do estabelecimento de formações florestais, passando por estádios transitórios de proliferação de espécies arbustivas e lenhosas pioneiras (GACHON, 1979).

SUBPASTOREIO

Com encabeçamentos baixos, os animais realizam uma selecção de pastoreio escolhendo as espécies "apetecíveis" (CRESPO, 1975a; SALGUEIRO, 1984). De facto, VAN DYNE e HEADY (cit. por BOURBOUZE, 1984), encontraram diferenças significativas entre a composição botânica de pastagens e a composição botânica do bolo alimentar (determinando através da fístula esofágica em ovinos), quando
a disponibilidade de pasto era elevada. Segundo ARNOLD (1970) este comportamento de "preferência" é determinado pelo factor animal (espécie) e pelo factor planta (natureza-constituição).

Assim, as plantas refugadas pelos animais, possuindo melhores condições do que as outras para competir pelos factores de crescimento (READY, 1970), realizarão todo o seu ciclo. A pouco e pouco irão proliferando, mediante a disseminação e germinação das suas sementes, e/ou aumentando a extensão dos seus tufos (GACHON, 1979). A partir desse momento, dar-se-à início a um processo de degradação da pastagem. Este processo é contínuo, sendo denominado por MOREIRA (1986) pelo "ciclo de degradação".

Segundo GACHON (1979), esta degradação é inicialmente lenta, podendo tardar uma ou mais gerações humanas até ao momento em que, a velocidade do processo se torna extremamente rápida.

PRESSÃO DE PASTOREIO AJUSTADA À PRODUTIVIDADE DA PASTAGEM

Quando o nível de seleção de pastoreio é reduzido, a maioria das
plantas sofre o seu efeito. Sob essas condições, serão favorecidas as espécies mais adaptadas ao pastoreio, isto é, aquelas que mais rapidamente conseguem reconstituir as suas folhas, porque possuem elevadas reservas glucídicas ou porque o porte permite-lhe preservar um grande número de rebentos, com capacidade fotossintética, fora do alcance dos animais (GACHON, 1979).

Dentro destas espécies, são as leguminosas anuais aquelas que possuem maior capacidade de adaptação (HEADY, 1970). Este facto deve-se aos hábitos de crescimento prostado que adquirem, preservando uma grande quantidade de folhas jovens junto ao solo, por baixo dos caules e estolhos onde se acumulam as reservas de hidratos de carbono (MOSLERA e RATERA, 1984). Por outro lado, alcança-se um índice de área foliar que maximiza o crescimento e o balanço energético da pastagem (BLACK, 1963).

Durante a Primavera, como a remoção de pasto pelos animais não permite uma altura exagerada das plantas (ALMEIDA, 1983), verifica-se a penetração de luz até aos níveis mais baixos da vegetação (LARCHER, 1975), permitindo que o processo de indução floral se realize normalmente (EVANS, 1969). Assim, será também favorecida a produção de semente pelas leguminosas (MOSLERA e RATERA, 1984), essencial para a persistência destas espécies.

Relativamente ao material devolvido ao solo, irá verificar-se um equilíbrio entre a reciclagem "vertical" (correspondente à parte aérea das plantas) e a "horizontal" (correspondente às dejeções dos animais), dando origem a uma matéria orgânica mais degrada e com maior conteúdo em minerais (MONTSERRAT, 1977).

A razão C/N diminui, devido a uma maior percentagem de leguminosas na vegetação (CRESPO, 1985) e provavelmente, devido até, ao azoto contido nas dejeções dos animais (de origem metabólica e da descamação das células das

De facto, uma pastagem submetida a estas condições de pastoreio, tende a um aumento da produtividade e persistência. SALGUEIRO (1986) refere que este processo é contínuo e cíclico, sugerindo mesmo um ciclo de estabilidade, que evolui no sentido contrário do da degradação, apresentando por MOREIRA (1986), atrás referido.

SOBREPASTOREIO

Removendo o pasto de forma excessiva, as plantas diminuem o seu crescimento e adquirem um porte extremamente prostrado (GACHON, 1979). A exagerada mobilização de reservas, leva a que sejam utilizados os glúcidos contidos nas raízes; estas, em consequência, vão diminuindo de peso e tamanho (HYCKA, 1984), podendo levar à morte da planta. Durante a estação seca os animais ingerem grande quantidade de semente (HALL, 1984), que apenas conservará o poder germinativo numa pequena percentagem (CARTER, 1980). Assim, a pouco e pouco a densidade de plantas diminui, aumentando a área de solo sem coberto vegetal (ALMEIDA, 1983).

No aspecto da reciclagem de nutrientes, verifica-se um desequilíbrio, devido à maior quantidade de dejeções dos animais (MONTSERRAT, 1977). A razão C/N do solo diminui, dando origem ao estabelecimento e proliferação de espécies de plantas do tipo nitrófilo (ALMEIDA, 1983; CRESPO, 1985) sem qualquer interesse forrageiro.
A baixa da produtividade da pastagem é, normalmente, um processo extremamente rápido (GACHON, RICOU e GRUNER, 1979), contrariamente à situação de subpastoreio. O ecossistema tende, nesta situação, à degradação, com riscos elevados de erosão do solo.

Até ao momento, analisámos como reage todo o ecossistema Solo-Planta-Animal, a variações do nível trófico superior (apenas no aspecto do número de animais por unidade de área). Esta análise permite-nos verificar a complexidade de relações que se estabelecem no sistema, e concluir que, todas as acções exercidas em qualquer dos níveis tróficos têm implicações no produto final extraído (tanto do ponto de vista quantitativo como qualitativo).

Poderemos então afirmar, que o melhoramento das pastagens naturais, pode ser realizado através de acções que provoquem um equilíbrio e persistência das espécies prateses com interesse forrageiro, maximizando a utilização dos recursos disponíveis, dentro de uma perspectiva de rentabilidade económica e de preservação dos factores ambientais.

Na fig. 14 apresentam-se, de forma esquemática, as principais relações que se estabelecem no ecossistema Solo-Planta-Animal, condicionado pelas acções que o homem pode exercer sobre ele.

Fig. 1.14 Relações ecológicas definidas no ecossistema "plantas-animais".

SOLO
- Água
- pH
- Elementos nutritivos

PASTAGEM
- Resíduos
 - Gramíneas
 - Outras
 - Leguminosas

ANIMAL
- Pastoreio
- Pisoteio
- Excrementos

CLIMA
- Precip. (Precipitação)
- Temp. (Temperatura)
- Radiação

MANEIO
- Método de colheita
- Condução e controle do pastoreio

ACÇÃO ANTROPICA
- Drenagem, subsolo, etc.
- Fertilização
- Mobilização
1) Através do manejo correcto dos animais;
2) Realizando fertilizações e manejo correcto dos animais;
3) Introduzindo espécies de variedades comerciais de pratenses, realizando fertilizações e um manejo correcto dos animais.

CARTER (1984) refere que a introdução de variedades comerciais pode ser realizada de duas formas:
1) Se na composição botânica das pastagens naturais se encontrarem algumas leguminosas, então a sementeira deve ser realizada com uma baixa densidade, através de uma mobilização que não destrua as espécies existentes;
2) Se as pastagens forem excessivamente pobres em leguminosas, então deverão ser semeadas variedades comerciais, através de uma mobilização que destrua as espécies existentes.

Nos pontos seguintes, far-se-á uma abordagem mais detalhada de cada um dos métodos de melhoramento citados.

1.4.2. Fertilização

Por "fertilização", entende-se a aplicação às culturas, de adubos, correctivos orgânicos ou correctivos minerais.

Segundo QUELHAS DOS SANTOS (1982), a fertilização é um dos factores determinantes da produção das pastagens, podendo resumir os objectivos da sua aplicação em 3 pontos:
1) Corrigir os defeitos eventuais da fertilidade do solo;
2) Assegurar à planta uma nutrição correcta, que lhe permita exibir o seu potencial genético para a produção;
3) Obter forragens com uma composição equilibrada de nutrientes.

De facto, pouca atenção é prestada às pastagens naturais de sequeiro,
em relação a este aspecto. GONZALEZ et al. (1984); OLEA (1986) e OLEA et al. (1987) encontraram uma resposta da composição botânica e um aumento da produção de matéria seca (MS) de pastagens naturais, devido ao efeito da fertilização. Os resultados apresentados por estes autores, e as conclusões de QUELHAS DOS SANTOS (1982), levam-nos a afirmar, que a baixa produtividade das pastagens naturais, referida por CRESPO (1975b) e SALGUEIRO (1984), deve ser devida, entre outras causas, à não realização de fertilizações:

- A carência de nutrientes disponíveis, condicionam a produção, já de si limitada pelos problemas inerentes às características do solo. Estas, podem ser melhoradas através de correctivos orgânicos e minerais; a carência de nutrientes, através de uma adubação racional (QUELHAS DOS SANTOS, 1982). Passamos de seguida, a referir os efeitos destas práticas, nas pastagens de sequeiro à base de leguminosas anuais.

CORRECTIVOS ORGÂNICOS

Segundo QUELHAS DOS SANTOS (1982), o efeito da correcção orgânica depende do tipo de planta, sendo as leguminosas vivazes mais favorecidas que as anuais.

Os correctivos, actuam sobre as características físicas do solo, originando uma melhor estrutura, arejamento, além de provocarem um aumento de temperatura (QUELHAS DOS SANTOS, 1982). Estes efeitos têm como consequência uma maior capacidade de armazenamento de água e uma melhor drenagem, constituindo também um meio de defesa contra o encharcamento.

Os correctivos orgânicos são também uma fonte de nutrientes, tanto para as plantas como para os microorganismos do solo. QUELHAS DOS SANTOS (1982) salienta a sua importância pelo fornecimento de certos macronutrientes secundá-
rios e micronutrientes, que os adubos não incluem.

CORRECTIVOS MINERAIS

Os solos ácidos possuem uma capacidade de troca catiônica reduzida, e são susceptíveis de provocar, nas leguminosas, problemas de toxicidade devido ao alumínio e manganêsio (HORSNELL, 1985a), carências de cálcio e magnésio, além de não favorecerem a atividade microbiana (QUELHAS DOS SANTOS, 1982).

A quantidade a aplicar depende do pH, do teor em matéria orgânica e da textura do solo. Porém, uma sobrecalagem pode deprimir as produções (QUELHAS DOS SANTOS, 1982), ou provocar uma mineralização exagerada da matéria orgânica.

Quanto à qualidade do calcário a utilizar, QUELHAS DOS SANTOS (1982) e PIRES (1986), referem que o calcário magnesiano tem um efeito superior ao do calcário calcítico ou dolomítico, quando aplicado a leguminosas anuais. PIRES (1986), salienta que o calcário magnesiano permitiu alcançar teores de magnésio (na matéria seca), superiores 0,2%, mesmo com doses baixas.

ADUBAÇÃO AZOTADA

Anteriormente foi já discutido o problema da aplicação de adubos azotados a pastagens de sequeiro.

Se a simbiose entre as leguminosas e o Rhizobium for efectiva, parece não haver grande resposta à aplicação de adubos azotados (CRESPO, 1981), podendo inclusivamente, afectar de forma negativa a produção (QUELHAS DOS SANTOS, 1982).
BULLITTA e RIVOIRA (1985) determinaram um aumento de cerca de 3 t, de MS por hectare, aplicando um total de 90 Kg N por hectare, a pastagens naturais de sequeiro, na Sardenha (Itália).

A aplicação de azoto segundo DIAS CORREIA (1983), tem um efeito negativo na actividade do Rhizobium, podendo provocar ineficácia da simbiose.

Assim, poderemos concluir que na generalidade, a fertilização com adubos azotados das pastagens de sequeiro, não deverá ser aconselhada, pelo menos devido ao elevado custo económico que implica (CRESPO, 1982; QUEIJAS DOS SANTOS, 1982) e sobretudo se houver uma presença significativa de leguminosas na vegetação.

ADUBAÇÃO FOSFATADA E POTÁSSICA

O fósforo tem um efeito estimulador no crescimento radicular, na nodulação e fixação do azoto atmosférico, e permite um aumento da concentração em fósforo, do pasto (HORSNELL, 1985a; HORSNELL, 1985b).

QUEIJAS DOS SANTOS (1982) refere que o fósforo pode encontrar-se em formas não assimiláveis para as plantas, devendo-se aplicar adubos fosfata-
dos, sendo o mais indicado o superfosfato de cálculo 18%.

HORSNELL (1985a e 1985b) estudou o efeito da aplicação de superfosfato de cálculo, a leguminosas anuais, em solos ácidos, chegando às seguintes conclusões:

- O sulfato de cálculo contido neste adubo, aumenta a concentração de Al⁺⁺⁺ na solução do solo; a nível de campo verificou uma diminuição do pH provocada pela aplicação de superfosfato de cálculo;

- As leguminosas anuais são susceptíveis aos problemas de toxicidade, sendo o seu crescimento reduzido quando os níveis de Al⁺⁺⁺ no solo ultrapassam 1,2 ppm. Nesse caso, não obtinha resposta dos crescimentos à aplicação do super-
fosfato;

- Por outro lado, verificou que o nível de nodulação, após a aplicação daquele adubo, era inferior, devido também ao efeito do sulfato de cálcio sobre os níveis de Al+++. Neste caso, o azoto seria o elemento mínimo, limitante da produção;

- Aplicando calcário, conjuntamente com o superfosfato, os níveis de Al+++ baixaram significativamente, observando então uma resposta positiva da produção de MS, à aplicação daquele adubo.

QUELHAS DOS SANTOS (1982) observou uma maior produção e concentração em fósforo nas plantas se, para o mesmo nível de adubação fosfatada, fosse aplicado o calcário magnesiano comparativamente com o calcítico.

BULLITTA e RIVOIRA (1985) referem aumentos de, aproximadamente, 2 t, de MS por hectare, aplicando 100 Kg de P\textsubscript{2}O\textsubscript{5} por hectare, a pastagens naturais.

O potássio permite, às leguminosas, adquirir maior resistência ao frio, às pragas e doenças (QUELHAS DOS SANTOS, 1982). Por outro lado é essencial para a formação dos nódulos (DIAS CORREIA, 1983), intervindo assim no processo de fixação do azoto atmosférico.

A sua aplicação deve ser cuidadosa, uma vez que grandes quantidades podem interferir negativamente na absorção de magnésio (QUELHAS DOS SANTOS, 1982). Este facto é importante, pois poderá eventualmente contribuir para o aparecimento de "Tetania da erva", nos animais em pastoreio. Porém, QUELHAS DOS SANTOS (1982) refere que as leguminosas possuem uma elevada capacidade de troca cátionica, podendo sempre absorver quantidades de magnésio, suficiente para fazer face às necessidades dos animais.

- 42 -
MACRONUTRIENTES SECUNDÁRIOS E MICRONUTRIENTES

Além do cálcio e magnésio, já referidos, é de salientar o enxofre, para o qual as leguminosas são exigentes (QUELHAS DOS SANTOS, 1982). Ele é indispensável para a formação dos aminoácidos sulfurados, condicionando o nível de azoto atmosférico fixado (SHOCK et al., 1984). Porém, sendo veiculado pelo superfosfato de cálcio 18%, cuja composição contém 12% de enxofre, poderá não ser necessário aplicá-lo especificamente, caso seja utilizado aquele adubo.

No que respeita aos micronutrientes, SEQUEIRA et al., (1980) verificou que solos Fx, Vx e Pg, apresentavam níveis insuficientes e/ou imobilização de Mo, B, Zn e Co.

O molibdênio é necessário para a formação do enzima nitrogenase, que se encontra nos nódulos das raízes das leguminosas, e que intervém de forma indispensável, no processo de fixação de N atmosférico (DIAS CORREIA, 1983). Neste processo intervêm também os restantes micronutrientes, com destaque para o cobalto (QUELHAS DOS SANTOS, 1982). O boro parece ter um efeito estimulador na produção de semente (ROMANO, 1986).

Segundo CRESPO (1975) serão necessários 150 - 300 g de molibdato de sódio por hectare, 3 a 4 kg por hectare e ano de borato de sódio e 0,5 a 2 kg por hectare de sulfato de cobalto, aplicados de 5 em 5 anos.

O MELHORAMENTO ATRAVÉS DA FERTILIZAÇÃO

GONZALEZ et al. (1984), OLEA (1986), OLEA, PAREDES e VERDASCO (1986) e OLEA et al. (1987), referem que a produtividade de pastagens naturais de sequeiro é incrementada, através da aplicação de fósforo, potássio, micronutrientes e calcário, de acordo com o seguinte procedimento:
1º Ano

(em cobertura) - 35 a 70 kg P₂O₅ ha⁻¹
- 35 a 60 kg K₂O ha⁻¹
- quantidade de micronutrientes de acordo com as características do solo
- quantidade de calcário de acordo com as características do solo

2º Ano e seguintes

(em cobertura) - 17 a 35 kg P₂O₅ ha⁻¹

O procedimento referido, permitiu um incremento aproximado de 500 a 1200 MS por hectare (médias de 5 anos) variáveis com as regiões onde os ensaios foram instalados.

CARTER (1984) salienta que, para que este método produza um efeito de melhoria economicamente rentável, é necessário existirem leguminosas anuais na flora espontânea. O mesmo autor refere que um método de avaliação bastante preciso consiste na determinação da reserva de sementes de leguminosas, no solo. As quantidades por hectare, citadas como limite inferior, são 400 kg para sementes com dimensões superiores a 1 mm (Trifolium subterraneum L., Ornithopus compressus, etc.), e 200 kg para sementes com dimensões inferiores (Trifolium glomeratum, Trifolium tomentosum, Trifolium cherleri, Scorpiurus vermiculata, etc.).

Num estudo anterior à instalação do ensaio a que se refere este trabalho, ALMEIDA (1984) determinou a reserva total de sementes de leguminosas em alguns locais da região, encontrando valores entre 24 kg e 620 kg por hectare.

Estes resultados permitem-nos afirmar que, o método de melhoriaamento
de pastagens de sequeiro através da fertilização, poderá ter resultados positivos na região de Castelo Branco, apenas em algumas situações.

1.4.3. Sementeira de variedades comerciais

CRESPO (1982) e SALGUEIRO (1984) referem que a sementeira com misturas de variedades comerciais de trevos subterrâneos, constitui o meio mais eficaz de melhoramento das pastagens de sequeiro. Porém, o elevado custo que essa técnica implica, conjugado com maus resultados obtidos, levaram alguns autores a repensarem o problema.

QUINLIVAN (1978), OLEA, PAREDES e VERDASCO (1985), OLEA e VERDASCO (1986), OLEA, PAREDES e VERDASCO (1986), citam que a sementeira de trevos subterrâneos têm tido insucesso, podendo-se resumir os problemas de adaptação, a baixa produtividade e persistência.

Segundo QUINLIVAN (1978), embora o maneio de pastoreio e as pragas ou insetos, possam estar relacionadas com os insucessos obtidos, a causa maior deve-se à relação "clima-ecótipo". Antes de mais, convém referir que as sementes existentes no mercado português e espanhol, são na sua maior parte, oriundas da Austrália. O clima mediterrânico, das áreas australianas onde são obtidas as variedades comerciais, caracteriza-se de uma forma geral, segundo QUINLIVAN (1978), por dois modelos de temperatura:

- "Invernos suaves (10 - 12°C de mínima) e Verões muito quentes (35 - 37°C de máxima)";
- "Invernos frios (2 - 4°C de mínima) e Verões suaves (26 - 28°C de máxima)".

De facto, os modelos de temperatura na região sudoeste da península ibérica, são os extremos de dois modelos australianos (QUINLIVAN, 1978). Segundo
o mesmo autor, as temperaturas demasiado baixas no Inverno, provocarão uma redução anormal do crescimento e o alongamento, daí consequente, dos ciclos. O aumento brusco das temperaturas da Primavera, e os valores registados, demasiado altos, prejudicarão a produção de semente (QUINLIVAN, 1978). Durante o Verão, o excessivo número de dias com temperaturas altas, provoca também uma exagerada quebra na dureza das sementes de variedades australianas (OLEA e VERDASCO, 1986). OLEA e VERDASCO (1986) referem que, variedades autóctones espanholas e portuguesas de Trifolium subterraneum (L.) Katz e Trifolium brachycallicinum Katz., têm a capacidade de manter uma maior percentagem de sementes duras, comparativamente a variedades australianas similares.

OLEA, PAREDES e VERDASCO (1985) citam que, a variabilidade na data de início das chuvas condiciona também a persistência destas pastagens, pois a produção de semente das variedades australianas é muito susceptível àquele efeito.

Os mesmos autores referem, que de 27 variedades comerciais estudadas, apenas uma (Seaton Park), possui uma flexibilidade de adaptação boa.

Segundo CARTER (1984), devido ao problema de adaptação das variedades disponíveis, é necessário distinguir duas situações:

1) Áreas onde a flora pratense não contenha leguminosas: Dever-se-á proceder à sementeira, realizando uma mobilização que destrua a vegetação existente, a fim de permitir as melhores condições para as espécies que se introduzirem;

2) Áreas onde, na flora, se encontram leguminosas espontâneas: dever-se-á proceder a uma sementeira com baixas densidades (6 - 8 kg de leguminosas por hectare); a mobilização a efectuar não deverá destruir a vegetação existente. Para isso propõe a realização de escarificações ou gradagens, superficiais,
realizadas "no pó", isto é, antes da germinação das sementes.

No caso de se proceder à sementeira, CRESPO (1975a) e MOREIRA (1980), aconselham que seja utilizada uma mistura de 3 a 6 variedades de leguminosas (num total de 15 kg por hectare) e 1 ou 2 variedades de grásmicas (um total máximo de 10 kg por hectare). O objectivo de utilizar uma mistura é, principalmente, permitir uma maior adaptação ao "espaço" e ao "tempo" (variabilidade de solo e climática entre anos) (MONTOYA, 1982, cit. por OLEA, PAREDES e VERDASCO, 1985; CARTER, 1984).

Segundo CRESPO (1975a), a fertilização destas pastagens deve ser efectuada realizando uma calagem antes da sementeira, aplicando depois uma adubação de fundo com 20 a 50 unidades de azoto, 50 a 100 unidades de fósforo e 50 a 300 Kg de potássio, por hectare; nos anos seguintes à sementeira, deverá ser realizada uma cobertura outonal, com 20 a 40 unidades de fósforo por hectare. Segundo o mesmo autor, o azoto aplicado na adubação de fundo pode ser dispensável, pois destina-se apenas ao "arranque" das leguminosas. QUEIJAS DOS SANTOS (1982) refere também que quando as sementes são muito pequenas (com reservas diminutas), pode haver vantagens em aplicar uma pequena dose de azoto.

JIMÉNEZ e MARTINEZ (1982) determinaram valores para adubação de fundo e cobertura, em fósforo, idênticos aos de CRESPO (1975a). Porém referem níveis de potássio, a aplicar em fundo, mais baixos (14 a 18 Kg de K₂O por hectare), no caso da pastagem ser utilizada com encabeçamentos entre 3 a 4 ovelhas por hectare.

A sementeira deve ser realizada no início do Outono (CRESPO, 1975a; MOREIRA, 1980), sendo a sua data determinante da produção de somente e consequentemente, da persistência, como se demonstra na fig. 1.15.
1.4.4. Maneio de pastoreio

Fizemos já referência a como através da pressão de pastoreio, se pode alterar a dinâmica da flora pratense. Foi também estudada, a forma como a remoção insuficiente do pasto, pode conduzir à degradação da pastagem.

CRESPO (1975a e 1985) considera que os encabeçamentos baixos são a causa principal do insucesso das pastagens semeadas; CARTER (1984) aponta esse facto como uma das causas da degradação das pastagens naturais de sequeiro, em Portugal.

Segundo OLEA (1986), o maneio de pastoreio constitui uma das formas de melhorar as pastagens, que deverá acompanhar sempre qualquer dos outros métodos já mencionados.

(1) Número médio anual de animais por hectare
Desde que as necessidades nutritivas das plantas sejam satisfeitas, o pastoreio, com encabeçamentos ajustados à potencialidade da pastagem, estimula o seu crescimento (HEADY, 1970; SALGUEIRO, 1980). Sob condições ideais, iniciar-se-á então um ciclo, no qual se verifica um aumento da produtividade da pastagem, por efeito do aumento do encabeçamento (SALGUEIRO, 1986):

```
Aumento do encabeçamento  Aumento da produção da pastagem
```

WILLOUGHBY (1959) e CARTER (1977) confirmaram este efeito, em pastagens semeadas com trevo subterrâneo.

O incremento da produção de pasto não é proporcional ao número de animais por hectare (CARTER, 1977), devendo ter-se em atenção não ultrapassar o ponto de equilíbrio. Segundo GACHON, RICOU e GRUNER (1979), esse ponto é alcançado, quando os animais removem 50 a 80% da produção total da pastagem.

Em relação à produção de semente (que determina a persistência destas pastagens), verifica-se que o pastoreio exerce um efeito similar, incrementando a quantidade produzida (COCKS, MATHISON e CRAWFORD, 1980) e o número de glomérulos enterrados por cada planta (COLLINS et al., 1983).

Na generalidade, a adoção de um sistema de pastoreio, depende das condições particulares inerentes a cada exploração e das espécies existentes na flora, que se deseje favorecer (HEADY, 1970).

Segundo RAMOS (1973) o "sistema de pastoreio rotacional" retirando os animais nos períodos de formação de semente das leguminosas, tem um efeito benéfico sobre a pastagem, superior ao sistema contínuo. Porém, o mesmo autor refere que a rentabilidade é maior, quando se utiliza este último sistema.

- 49 -
CRESPO (1975b) ao abordar este tema, refere que não se deve suspender o pastoreio durante o período de formação de sementes, pois poderia provocar-se uma diminuição na quantidade produzida. Por outro lado, se pensarmos na variabilidade dos ciclos das espécies existentes na pastagem, concluiremos que esse período seria longo, além de coincidir com a época de maiores crescimentos diários. Caso o pastoreio fosse interrompido nessa época, perder-se-ia a melhor fase produtiva.

Outra possibilidade, é a utilização do sistema diferido ou interrompido. Segundo CRESPO (1975b), para este tipo de pastagens, a suspensão do pastoreio deve ser realizada desde a germinação até à emissão da primeira folha trifoliada dos trevos. Esta acção, tem como consequência uma maior persistência das plantas devido a ser evitado o corte precoce, protegendo-se o desenvolvimento inicial, tanto da parte aérea como radicular. Este efeito é confirmado por ALMEIDA (1983), comparando o sistema diferido com o contínuo.

A produtividade das pastagens utilizadas em pastoreio diferido, pode ainda ser incrementada, se no período que precede a floração das leguminosas, a carga instantânea for superior ao encabeçamento médio (WILLOUGHBY, 1959).

Para que seja possível o maneio correcto de pastoreio, é indispensável a instalação de cercas e bebedouros, e uma modificação dos métodos tradicionais de condução dos rebanhos (CRESPO, 1975a; SALGUEIRO, 1986).
1.4.5. A influência das técnicas de melhoramento na qualidade do pasto produzido

OLEA, PAREDES E VERDASCO (1986) estudaram, na região sudoeste de Espanha, o teor proteico e a digestibilidade "in vitro" da matéria orgânica do pasto, produzido em pastagens naturais sem e com fertilização e em pastagens de trevo subterrâneo. Os resultados que apresentam, embora denotem diferenças reduzidas nos parâmetros analisados, parecem apontar, segundo aqueles autores, para valores superiores quando se procede à sementeira de trevo subterrâneo. Segundo GARCIA CIUDAD et al. (1984), as variedades comerciais australianas de Trifolium subterraneum, T. brachygallicum e T. yanninicum, apresentam de uma forma geral maiores produções de proteína bruta (grama por planta), comparativamente a variedades autôctones espanholas. Estes autores concluíram que o principal factor a induzir as diferenças observadas, não era o teor de proteína bruta (%) de MS das plantas, mas sim os diferentes níveis de produção de MS.

ABREU et al. (1982) referem valores dos parâmetros nutricivos, mas apenas para pastagens de trevo subterrâneo sem serem submetidas a pastoreio (ABREU, com. pessoal).

ALLEN (1981) estudou a evolução do valor nutritivo ao longo do ciclo de produção e os factores limitantes da produção animal, em pastagens de trevo subterrâneo, na zona mediterrânea da Austrália; refere que o crescimento da pastagem durante o período invernal é um dos factores mais determinantes do "output" da produção animal, e que o nível da ingestão diária de energia digerível, durante a estação seca, é o factor mais limitante.

No quadro 1.2 que se apresenta na página 54, estão descriminados os resultados que se encontraram na bibliografia.
Relativamente à produção de proteína bruta por ha e ano, ABREU et al. (1982) citam valores de 760 kg, para pastagens de trevo subterrâneo.

Segundo WALTON (1982), a combinação entre "raças melhoradas", introdução de novas variedades de sementes e utilização de fertilizantes, revelou substâncias químicas indesejáveis na composição das plantas. Assim sendo, é importante tomar em consideração os chamados factores de "anti-qualidade" (WALTON, 1982) ou "substâncias refratárias e inibidoras" (VAN SOEST, 1982):

1) Frequentemente é referido que os trevos subterrâneos contêm compostos com actividade estrogénica, passíveis de causar problemas na reprodução dos ovinos. Dentro destes compostos é de referir as flavonas e isoflavonas (VAN SOEST, 1982; DIAS CORREIA, 1983). As variedades comerciais de trevo subterrâneo são classificadas de acordo com o seu conteúdo nestas substâncias. Porém, segundo VAN SOEST (1982) e PARBERY et al. (1984), o teor em compostos estrogénicos e a sua síntese pela planta, são incrementados quando ocorre uma infecção por fungos patogênicos ou em situações de stress. Assim sendo, estas conclusões sugerem que o problema está relacionado com o manejo de pastoreio: se o encabeçamento e/ou sistema de pastoreio, não permitirem uma remoção suficiente do pasto, podem estar criadas as condições para a infecção das plantas por fungos, podendo então ocorrer os problemas citados.

2) Os alcalóides são compostos azotados heterocíclicos presentes em algumas plantas, que podem causar a morte dos animais em pastoreio, por toxicidade (VAN SOEST, 1982). Em algumas plantas, são responsáveis por um sabor amargo que leva os animais a refugá-las (DIAS CORREIA, 1983). Nas plantas que se utilizam para o melhoramento de pastagens, os alcalóides podem atingir teores elevados principalmente nas gramíneas, em variedades de Phalaris e de Lolium perenne.
(VAN SOEST, 1982; WALTON, 1982; DIAS CORREIA, 1983). Pensa-se também que, os teores destas substâncias estão ligados à infecção das plantas e a níveis elevados de adubações azotadas (DIAS CORREIA, 1983).

3) As saponinas contidas em algumas leguminosas, podem aumentar a tensão superficial do líquido ruminal provocando a indigestão gasosa, ou causar ainda outros distúrbios metabólicos (VAN SOEST, 1982; WALTON, 1982; DIAS CORREIA 1983). A indigestão gasosa pode ainda ser provocada por uma proteína designada por 18S (MAC ARTHUR e MULTIMORE, 1966 cit. por WALTON, 1982); porém segundo WALTON (1982), os taninos contidos em algumas variedades de luzernas anuais, precipitam esta proteína, impedindo assim a ocorrência do problema referido.

4) A "Tetania da erva" ou hipomagnesia é causada por níveis baixos de magnésio no sangue dos animais em pastoreio. Quando, no pasto, a relação \[K^+ : (Ca^2+ e Mg^2+) \] excede 2,2, existem maiores riscos para o animal do que quando é inferior (WALTON, 1982). Segundo LYNCE DE FARIA e SARAIVA LIMA (1986), existem diversos factores que podem afectar a relação entre aqueles catiões: Características do solo, fertilizações (principalmente as correções e adubações potássicas), clima e factores dependentes do animal (espécie e estado fisiológico). O aparecimento desta deficiência parece ainda estar ligado a problemas de absorção do magnésio por parte do animal (WALTON, 1982).
QUADRO 1.2

Resultados de composição química e valor alimentar de pastagens e espécies pratenses

<table>
<thead>
<tr>
<th>AUTOR</th>
<th>LOCAL</th>
<th>TIPO PASTAGENS OU ORIGEM ESPECIE(S)</th>
<th>ÉPOCA DE OBSERVAÇÃO</th>
<th>X da NS</th>
<th>P</th>
<th>MD (%)</th>
<th>OBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.Z.N. (1957)</td>
<td>Portugal</td>
<td>Serradela espontânea</td>
<td>17,7</td>
<td>9,6</td>
<td>13,6</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cit. por</td>
<td></td>
<td>Erva espontânea</td>
<td>Pasto jovem</td>
<td>8,9</td>
<td>14,6</td>
<td>12,4</td>
<td>a</td>
</tr>
<tr>
<td>CARGAL (1964)</td>
<td></td>
<td>Erva espontânea</td>
<td>antes floração</td>
<td>15,4</td>
<td>11,0</td>
<td>13,6</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erva espontânea</td>
<td>depois "</td>
<td>35,6</td>
<td>4,5</td>
<td>16,6</td>
<td>a</td>
</tr>
<tr>
<td>ALLBEN (1959)</td>
<td>Austrália</td>
<td>Phalaris tuberosa</td>
<td>Pasto seco</td>
<td>2,9-3,9</td>
<td>37,0-39,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gramíneas aquelas</td>
<td>"</td>
<td>5,2-6,1</td>
<td>35,2-36,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trevo subterrâneo</td>
<td>"</td>
<td>7,1-10,5</td>
<td>42,4-45,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLBEN (1981)</td>
<td>Austrália</td>
<td>Mistura com trevos</td>
<td>Pasto verde</td>
<td>18,6-25,6</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>subterrâneos</td>
<td>Pasto seco</td>
<td>6,9-11,9</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABREU et al (1982)</td>
<td>Portugal</td>
<td>Austrália (Trevo</td>
<td>17/Rev.</td>
<td>16,2</td>
<td>86,8</td>
<td>19,2</td>
<td>19,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>subterrâneo)</td>
<td>17/Abr.</td>
<td>22,3</td>
<td>90,1</td>
<td>13,3</td>
<td>29,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pasto seco</td>
<td></td>
<td>90,6</td>
<td>91,5</td>
<td>8,1</td>
<td>37,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mello 1982</td>
<td></td>
<td>11,54-16,99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO de Espanha (TS)</td>
<td>Maio 1980</td>
<td>7,47-9,21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mello 1982</td>
<td></td>
<td>12,78-16,04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salamanca " (TS)</td>
<td>Maio 1980</td>
<td>8,68-11,66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIVEIRA, PAREDES E VERDASCO (1986)</td>
<td>Espanha</td>
<td>P.natural</td>
<td></td>
<td>9,00-11,20</td>
<td>49,6-58,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.nat.fertilizada</td>
<td></td>
<td>10,60-13,50</td>
<td>53,7-63,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.trevo subterrâneo</td>
<td></td>
<td>11,60-14,30</td>
<td>54,0-68,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observações:

a - Originário em gramas / Kg do alimento
b - Lolium rigidum, Bromus spp e Hordeum leporinum
c - Valores extremos de 22 variedades comerciais de Trevo subterrâneo
d - Valores extremos de 19 variedades de TS, das 22 implantadas em 1980
e - Valores extremos de 13 variedades autóctones de Trevo subterrâneo
f - Valores extremos de 9 variedades de TS, das 13 implantadas em 1980
g - Valores extremos de 10 variedades autóctones de Trevo subterrâneo
Parte experimental
2.1. Objectivos do trabalho experimental realizado

A importância que tem para a região o desenvolvimento da produção pratense, e a escassez de trabalhos sobre a eficácia das técnicas de melhoramento de pastagens de sequeiro, levaram-nos a realizar um primeiro estudo de quantificação da reserva de sementes de leguminosas espontâneas no solo (ALMEIDA, 1984), para avaliar as potencialidades de aumento produtivo de pastagens naturais. Dada a grande variabilidade encontrada, concluiu-se ser necessário estudar comparativamente outras técnicas, para além da fertilização destas pastagens. Assim, foi delineado um ensaio, a que se refere este trabalho, com o objectivo de estudar várias técnicas de melhoramento de pastagens de sequeiro, analisando a sua adaptação à região e o seu efeito na produção e qualidade do pasto produzido.

A opção de instalar o ensaio referido sob coberto de oliveiras, baseou-se no facto de existir na região uma extensa área onde a reconversão dos olivais é bastante problemática. Assim, seria possível estudar, como alternativa de utilização destas áreas, a integração da produção pratense com a produção de azeita. A análise do efeito dos vários tipos de pastagem sobre o olival, está a ser realizada pela estação de olivicultura de Elvas.

O trabalho que se apresenta é o resultado dos dois primeiros anos de ensaio, respeitantes à produção pratense.

2.2. Material e métodos

2.2.1. Localização e condições edafo-climáticas

O ensaio foi implantado em Setembro de 1985, na folha nº 18 da Qtª de N. S. Mércules, pertencentes à Escola Superior Agrária de Castelo Branco.
O solo onde decorre o ensaio, é da origem corneanoxistosa, tem uma textura arenosa-franca a franco-arenosa, sendo de salientar a sua reduzida espessura, a pobreza em matéria orgânica e a elevada acidez. No Anexo 2, estão detalhadas as suas características.

Antes da instalação do ensaio procedeu-se à colheita de amostras do solo, cujos resultados da análise de rotina se apresentam no quadro 2.1.

Os valores de temperatura e precipitação registados durante o tempo de ensaio encontram-se no Anexo 2.

QUADRO 2.1

Resultados das análises do solo onde foi implantado o ensaio

<table>
<thead>
<tr>
<th>%MO</th>
<th>pH</th>
<th>(\text{K}_2\text{O})</th>
<th>(\text{P}_2\text{O}_5)</th>
<th>ppm</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,26±0,226</td>
<td>5,20±0,122</td>
<td>3,96±0,054</td>
<td>148±26,6</td>
<td>140±43,3</td>
<td></td>
</tr>
</tbody>
</table>

2.2.2. **Delineamento experimental, tratamentos e técnicas culturais**

O ensaio foi delineado em blocos completos casualizados (RCB), com quatro tratamentos e três repetições. A área total por talhão era de 30 x 22 metros.

Os tratamentos ensaiados foram:

A - Pastagem semeadu com mobilização total
B - Pastagem semeadu com mobilização mínima
C - Pastagem natural com fertilização
D - Pastagem natural (testemunha)

Tratamento A - a mobilização do solo consistiu numa lavoura profunda
seguida de duas gradagens, e teve como objectivo principal a destruição da flora espontânea existente.

Para fertilização de fundo aplicaram-se por hectare, 1500 kg de calcário, 72 unidades de fósforo, 60 de potássio, 26 de azoto e 10 kg de uma mistura comercial de micronutrientes. Para manutenção aplicaram-se nos anos seguintes em cobertura, 35 unidades de fósforo por hectare.

A sementeira foi realizada no dia 24 de Setembro de 1985, tendo sido utilizado um semeador "brillion". A mistura de sementes foi a seguinte:

\[
\begin{align*}
\text{Trifolium subterraneum} & \quad \text{cv NUNGRIN} & 2 \text{ kg/ha} \\
\text{Trifolium subterraneum} & \quad \text{cv SEATON PARK} & 5 \text{ kg/ha} \\
\text{Trifolium subterraneum} & \quad \text{cv WOGENELLUP} & 6 \text{ kg/ha} \\
\text{Trifolium brachycalyccinum} & \quad \text{cv CLARE} & 2 \text{ kg/ha} \\
\text{Dactylis glomerata} & \quad \text{cv CURRIE} & 6 \text{ kg/ha} \\
\text{Lolium rigidum} & \quad \text{cv WIMMERA} & 4 \text{ kg/ha}
\end{align*}
\]

Tratamento B - a mobilização neste tratamento foi efectuada com duas escarificações cruzadas, "no pó", em Setembro e antes das primeiras chuvas, tendo como objectivo a preparação do solo para sementeira, evitando a destruição da flora espontânea.

A fertilização tanto de fundo (1º ano), como de manutenção em cobertura (2º ano) foram iguais às do tratamento "A".

A sementeira foi realizada na mesma data que a do tratamento anterior, com semeador "brillion", e a mistura de sementes foi a seguinte:
<table>
<thead>
<tr>
<th>Trifolium subterraneum</th>
<th>cv NUNCARIN</th>
<th>1 kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifolium subterraneum</td>
<td>cv SEATON PARK</td>
<td>2,5 kg/ha</td>
</tr>
<tr>
<td>Trifolium subterraneum</td>
<td>cv WOOGENELLUP</td>
<td>3 kg/ha</td>
</tr>
<tr>
<td>Trifolium brachycalycinum</td>
<td>cv CLARE</td>
<td>1 kg/ha</td>
</tr>
</tbody>
</table>

Tratamento C - utilizaram-se as mesmas quantidades de fertilizantes que em "A" e "B", sendo porém aplicados em cobertura. Este tratamento não foi semeado, destinando-se a analisar a resposta da flora espontânea à fertilização, e a estabelecer uma comparação do seu potencial produtivo com o das outras pastagens referidas anteriormente.

Tratamento D - neste tratamento não se realizou qualquer técnica cultural, sendo utilizado como testemunha.

O ensaio foi submetido a pastoreio, por ovinos, com cargas instantâneas elevadas, não constantes, tempos de pastoreio curtos (2 a 6 horas); a frequência variou entre 24 e 72 dias de intervalo, dependendo dos crescimentos da pastagem. Este procedimento visou apenas provocar o efeito dos animais sobre o pasto.

2.2.3. Técnicas de amostragem e observações

No primeiro ano, início do ensaio, observou-se o número de leguminosas nascidas por m² (emergências). Para isso, procedeu-se à contagem de plantas, em amostras de 25 cm x 40 cm, tendo-se registado o valor de 20 amostras por cada talhão.
A composição botânica e a percentagem de solo coberto pela vegetação, foi realizada no primeiro ano de ensaio, através do método da "10 agulhas verticais" ou "Levy-point" (HEADY, 1970; CARTER, 1984). Os resultados são expressos em três grupos de plantas: "Gramíneas", "Leguminosas" e "outras plantas". As datas de observação foram coincidentes com as de corte do pasto para análise laboratorial. Foram executadas 5 estações por talhão.

As produções foram estimadas mediante cortes de amostras com uma área de 25 cm x 40 cm, tendo-se colhido 5 por talhão. As amostras de cada talhão eram reunidas numa amostra conjunta, que posteriormente era submetida a análise laboratorial, determinando-se o peso da matéria seca da amostra.

As datas dos cortes e observações efectuadas, encontram-se descritas no quadro 2.2.

QUADRO 2.2

<table>
<thead>
<tr>
<th>Nº DIAS APÓS GERMINAÇÃO</th>
<th>DATA</th>
<th>OBS.</th>
<th>Nº DIAS APÓS GERMINAÇÃO</th>
<th>DATA</th>
<th>OBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>27/11/85</td>
<td>A</td>
<td>51</td>
<td>15/12/86</td>
<td>D</td>
</tr>
<tr>
<td>72</td>
<td>21/01/86</td>
<td>B C D</td>
<td>86</td>
<td>19/01/87</td>
<td>C</td>
</tr>
<tr>
<td>108</td>
<td>24/02/86</td>
<td>B C D</td>
<td>120</td>
<td>12/02/87</td>
<td>C</td>
</tr>
<tr>
<td>116</td>
<td>06/03/86</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>20/03/86</td>
<td>B C D</td>
<td>155</td>
<td>19/03/87</td>
<td>C</td>
</tr>
<tr>
<td>150</td>
<td>09/04/86</td>
<td>C</td>
<td>170</td>
<td>03/04/87</td>
<td>C</td>
</tr>
<tr>
<td>165</td>
<td>24/04/86</td>
<td>B C D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>30/05/86</td>
<td>C D</td>
<td>211</td>
<td>14/05/87</td>
<td>C D</td>
</tr>
</tbody>
</table>

A - EMERGÊNCIAS
B - COMPOSIÇÃO BOTÂNICA
C - CORTES PARA ESTIMATIVA DE PRODUÇÃO
D - CORTES PARA ESTIMATIVA DE QUALIDADE
Os cálculos dos crescimentos diários e da produção das pastagens, foram executados segundo uma adaptação da técnica preconizada por CARTER (1984) - "close cut/open cut". Esta consiste em, uma vez que o ensaio foi submetido a pastoreio, realizar um primeiro corte antes da entrada, e um segundo corte imediatamente após a saída, dos animais. Desta forma, evita-se a utilização de gaiolas. Os crescimentos do pasto, são obtidos para os intervalos de tempo entre datas de pastoreio:

\[(1) \quad C_j = (Y_{ai} - Y_{d(i-1)})N_j \quad \text{sendo,} \]

- \(C_j \) - crescimento médio diário (kg MS.ha\(^{-1}\).dia\(^{-1}\)), entre a data "i" e a data "i-1";
- \(N_j \) - número de dias entre as datas "i" e "i-1";
- \(Y_{ai} \) - disponibilidade de pasto (kg MS.ha\(^{-1}\)) na data "i", antes da entrada dos animais;
- \(Y_{d(i-1)} \) - disponibilidade de pasto (kg MS.ha\(^{-1}\)) na data "i-1", depois da saída dos animais;

A produção total (kg MS.ha\(^{-1}\).ano\(^{-1}\)), é obtida através do somatório dos crescimentos:

\[(2) \quad P = Y_{ai} + \sum (C_j \times N_j) \]

Para obtenção da produção diária e anual, em termos de matéria seca digestível e de proteína bruta, por hectare, nas fórmulas 1 e 2, substitui-se o valor "Cj" por, respectivamente,
$C_j \times \text{Dig}(MS)_i/100 \quad \text{e} \quad C_j \times \text{PB}_i/100 \quad \text{onde,}

\text{Dig}(MS)_i$ - digestibilidade da matéria seca do pasto, na data "i";

\text{PB}_i$ - percentagem de proteína bruta na matéria seca, do pasto, na data "i".

2.2.4. Análises laboratoriais

As amostras do pasto, foram analisadas no laboratório de Nutrição Animal, da Escola Superior Agrária de Castelo Branco.

A determinação dos teores de matéria seca das amostras (MS), foi realizada através da secagem em estufa a 65$^\circ$C, durante 24 horas.

As restantes análises, efectuaram-se sobre as amostras colhidas antes da entrada dos animais para pastoreio.

2.2.5. Análise estatística

Procedeu-se à análise de variância dos resultados do ensaio, em cada corte ("fases de crescimento"), verificando a significância para as diferenças entre tratamentos. Para cada parâmetro estudado, com multiobservações
no tempo, procedeu-se também à análise de variância combinada (GOMEZ e GOMEZ, 1983), considerando as fases de crescimento como um factor em estudo, para além do factor "tratamento", verificando a significância para os dois factores e respectiva interação. A significância dos valores de F calculados, foi estabelecida para probabilidades inferiores a 0,05 (*), 0,01 (***) e 0,001 (****), considerando-se como significativos, muito significativos e altamente significativos, respectivamente.

Os valores de composição botânica, expressos percentualmente, foram submetidos, antes de se proceder à análise estatística, à transformação angular arc sen Vᵉ (SNEDECOR, 1980).

Para comparação dos valores médios, utilizou-se o teste das diferenças mínimas significativas (LSD), para probabilidades inferiores a 0,05 (*) e 0,01 (**), considerando-se as diferenças entre valores como significativas e muito significativas, respectivamente. Os valores médios com diferenças significativas entre si, são referenciados nos quadros, com letra diferente.

A evolução no tempo dos parâmetros, cuja análise de variância combinada revelou diferenças significativas, é estudada mediante regressão, apresentando-se o coeficiente de regressão (r) ou de determinação (R²), a significância do respectivo valor F calculado, e o número de valores (n). As regressões lineares foram obtidas pelo método dos mínimos quadrados (SNEDECOR, 1980); as não lineares, foram obtidas pelo método de linearização (GOMEZ e GOMEZ, 1983).
Resultados e discussão
3.1. Emergências

3.1.1. Resultados

Os resultados do número médio de leguminosas por m², no início do ensaio, encontram-se no Anexo 3 (quadro A3.1), estando representados graficamente na figura 3.1.

![Bar Chart](image)

Fig. 3.1: Número de leguminosas nascidas por m², no primeiro ano após a instalação do ensaio.

A análise de variância dos valores (quadro A3.2 do Anexo 3), permite verificar que as diferenças entre os tratamentos são muito significativas.
Como se pode observar na figura, onde é referenciado o resultado do teste para comparação dos valores médios, no tratamento "A" existia um número de plantas por m² muito inferior aos restantes, entre os quais as diferenças não são significativas.

3.1.2. Discussão

A conclusão a tirar dos resultados apresentados, é que a mobilização efectuada para os dois tratamentos onde se procedeu à sementeira de variedades comerciais, cumpriu com os objectivos visados: a destruição da flora espontânea existente antes da instalação, no tratamento "A", e a sua não destruição (em termos do número de plantas) no tratamento "B".

Não encontramos qualquer referência na bibliografia que nos permita estabelecer comparações. Apenas poderemos afirmar que, relativamente à instalação do prado de trevo subterrâneo, o valor de emergências que registámos, encontra-se dentro dos normais, estando de acordo com os citados por ALIDEN (1981), que permitem uma boa implantação das espécies.

3.2. Composição botânica

3.2.1. Resultados

Os resultados da evolução da composição botânica encontram-se no quadro A3.3 (Anexo 3), estando as regressões representadas graficamente na fig. 3.2.

As análises de variância dos valores (quadro A3.4 a A3.9) revelam que:

- Relativamente às gramíneas, não há diferenças entre tratamentos, existindo diferenças muito significativas entre as fases de crescimento;
- Encontram-se diferenças significativas entre os tratamentos, para
a percentagem de leguminosas, a partir do fim de Inverno-princípio da Primavera, sendo os valores dos 3 tratamentos "A", "B" e "C", superiores aos da testemunha. As diferenças entre as fases de crescimento, mostraram-se muito significativas;

- Embora não se tenham detectado diferenças significativas entre as várias fases de crescimento, para o grupo designado por "outras plantas", encontraram-se diferenças entre tratamentos: no início do ensaio, o tratamento "A" exibia uma percentagem inferior aos restantes, causada pela mobilização do solo efectuada, de acordo com o que foi exposto e analisado no ponto anterior; a partir da Primavera, os tratamentos revelaram, relativamente à testemunha, uma menor proporção de "outras plantas", com especial relevância para

- 67 -
a última fase, onde este efeito se acentua nos tratamentos "A" e "B".

Quanto ao grau de cobertura do solo pela vegetação (quadro A3.10), as análises de variância (quadros A3.11 e A3.12 do Anexo 3), revelaram existir diferenças altamente significantes entre as fases de crescimento e diferenças significantes entre a testemunha e os restantes tratamentos apenas no início da Primavera. As regressões (figura 3.3) demonstram que nos três tratamentos "A", "B" e "C", a cobertura do solo pela vegetação, se verifica mais rapidamente.

![Gráfico de Regressão](image)

Fig. 3.3 Evolução do grau de cobertura (%) do solo pela vegetação.

3.2.2. Discussão

Dos resultados apresentados, pode-se concluir que as técnicas de melhoramento "A", "B" e "C", não influenciaram a percentagem de gramíneas no pasto. Este facto foi também observado por OLEA, PAREDES e VERDASCO (1986),

- 68 -
quando compararam, em condições idênticas, a composição botânica de pastagens naturais com e sem fertilização, e pastagens de trevo subterrâneo. Porém, neste ensaio, verifica-se uma tendência no final do ciclo, para uma menor percentagem de graminéneas nos tratamentos "A", "B" e "C" relativamente à testemunha "D". Embora este facto não seja válido estatisticamente, pode dever-se eventualmente ao delineamento do ensaio, pois as 3 repetições permitem apenas 6 graus de liberdade para o erro experimental, não sendo por isso muito preciso para confirmar aquelas diferenças.

Quanto à proporção de leguminosas na pastagem, os tratamentos provocaram o seu aumento, em comparação com a testemunha "D", sendo de salientar a resposta da flora espontânea à fertilização. Estes resultados estão de acordo com os que são apresentados por GONZALEZ et al. (1984), OLEA (1986) e OLEA et al. (1987). OLEA, PAREDES e VERDASCO (1986), encontraram valores significativamente mais altos para a pastagem semeada de trevo subterrâneo, quando comparada com a natural fertilizada. No nosso caso este facto não foi verificado, mas poderá ficar-se a dever a duas causas: os resultados apresentados dizem respeito apenas ao primeiro ano após a instalação, e como tal, a quantidade de leguminosas depende da densidade de sementeira, sendo este facto referido por ALLDEN (1981); as diferenças observadas entre os tratamentos podem não ser significativas devido ao delineamento do ensaio, tal como foi já referido para o caso das graminéneas.

Relativamente ao grupo designado por "outras plantas", as diferenças observadas entre os tratamentos são uma consequência dos valores registados, tanto de graminéneas como leguminosas. Uma vez que os resultados são expressos em percentagem do total, se não há diferenças para as graminéneas e se as leguminosas são dominantes nos tratamentos referidos, então a percentagem de outras
plantas terá que ser inferior. É de referir ainda, que se denota uma tendência clara, no final do ciclo, para a pastagem de trevo subterrâneo ter uma percentagem inferior relativamente às naturais (com e sem fertilização). Este facto podia ser explicado pela mobilização efectuada para a instalação do trevo subterrâneo.

3.3. Crescimento diário e produção de matéria seca

3.3.1. Resultados

No quadro A3.13 (Anexo 3) apresentam-se os crescimentos médios diários, em termos de matéria seca, dos vários tratamentos. As análises de variância (quadros A3.14 a A3.17 do Anexo 3), permitem-nos enumerar as seguintes observações:

- No primeiro ano, a pastagem natural (testemunha) e a natural fertilizada ("C"), apresentam crescimentos significativamente superiores aos restantes tratamentos, durante o Inverno, embora na fase final da Primavera se verifique uma posição inversa, isto é, a testemunha exiba um crescimento inferior aos restantes, que não apresentam diferenças significativas entre si. As diferenças entre as fases de crescimento, apresentaram-se altamente significativas.

- No segundo ano, na primeira fase de desenvolvimento antes do "pico" outonal de produção, a pastagem de trevo subterrâneo com mobilização total ("A") e a natural fertilizada ("C") apresentaram os crescimentos mais elevados; a pastagem semeada com mobilização mínima ("B") foi superior à testemunha. No fim do Inverno (120-155 dias após germinação), o tratamento "A" exibiu crescimentos superiores aos restantes. No final do ciclo, a pastagem "A" teve os
crescimentos mais elevados; a "B" e "C" não demonstraram diferenças significativas entre si, tendo suplantado os valores exibidos pela testemunha.

As diferenças observadas entre as fases de crescimento revelaram-se muito significativas.

Estes resultados fazem-nos ainda pensar que, os crescimentos da pastagem natural são mais concentrados no período da Primavera.

O estudo da produção acumulada, foi realizado através de regressões, que se encontram representadas nas figuras 3.4 e 3.5. Como se pode observar, no primeiro e no segundo ano, a pastagem natural fertilizada ("C"), apresenta uma produção acumulada até à primeira fase de desenvolvimento, ligeiramente superior. No segundo ano, a partir do início do Inverno começa-se a destacar a produtividade da pastagem semeada de trevo subterrâneo com mobilização total ("A").
Fig. 3.5 Produção acumulada (Kg MS ha\(^{-1}\)) no segundo ano.

Fig. 3.6 Produção total de MS ha\(^{-1}\). ano\(^{-1}\).
A produção total de matéria seca por hectare consta do quadro A3.18, estando a sua representação gráfica na figura 3.6. As análises de variância (quadros A3.19 a A3.21), revelam que no primeiro ano não existem diferenças significativas entre os tratamentos, e que no segundo ano, a pastagem semeada ("A") produziu cerca de 3000 Kg de MS mais do que a testemunha, enquanto que as restantes ("B" e "C") foram superiores em apenas cerca de 1600 kg de MS. As diferenças que se podem observar entre os tratamentos "A" e "B", não se revelaram significativas.

3.3.2. Discussão

Os resultados dos crescimentos do primeiro ano não foram influenciados pelos tratamentos, porque a fertilização levará um certo tempo até surgirem os primeiros efeitos da sementeira, necessita-se normalmente um ano até que a quantidade de semente no solo seja suficiente para garantir a produtividade e persistência. Para tomar em consideração estes factos, é preciso pensar no aspecto dinâmico da vegetação; isto significa que, por exemplo, a maior produtividade pode ser devida a um aumento do número de plantas, esta consequência do tratamento efectuado no ano anterior. Este último aspecto é bem patente quando se observam os crescimentos invernais da pastagem semeada com trevo subterrâneo ("A"), superiores no segundo ano. CARTER (1984), refere mesmo que a produção do período invernal não depende tanto da variedade em si, mas da quantidade de plantas, que por sua vez depende da reserva de sementes no solo.

Nas fases críticas para as variedades comerciais de trevo subterrâneo (Inverno e fim de Primavera), não se verificaram os efeitos negativos sobre a produção, citados por QUINLIVAN (1978). Porém as condições climáticas verificadas foram bastante favoráveis, além de ser previsível, segundo aquele autor, que o coberto arbóreo exerce uma influência benéfica, no sentido de atenuação das temperaturas extremas.
Nos períodos onde se verificam os "picos" de crescimento diário (Outono e Primavera), os tratamentos ensaiados não registaram diferenças assinaláveis. Este facto está de acordo com os resultados apresentados por CARTER (1984).

O aumento da produção anual, devido à fertilização da pastagem natural, é intermédio dos verificados por OLEA et al. (1987) e BULLITA e RIVOIRA (1985), pelo que consideramos estarão de acordo os resultados obtidos por aqueles autores. Quanto à diferença entre a pastagem semeada de trevo subterrâneo ("A") e a pastagem natural, os valores que verificamos são superiores aos de OLEA, PAREDES e VERDASCO (1986); este facto poderá dever-se, entre outras causas, à influência benéfica do coberto arbóreo, à natureza do solo e às condições de clima verificadas.

O facto de não se encontrarem diferenças significativas entre o tratamento "A" e "B" está de acordo com as conclusões de CARTER (1984).

3.4. Composição química do pasto

3.4.1. Resultados

Os resultados médios das análises efectuadas encontraram-se nos quadros A3.22 e A3.35 (Anexo 3), referentes respectivamente ao primeiro e segundo ano do ensaio. As análises de variância dos valores do primeiro ano constam dos quadros A3.23 a A3.34, e as do segundo ano nos quadros A3.36 a A3.41 (Anexo 3).

Na figura 3.7 está representada a evolução da % MS ao longo do ciclo. Como se pode observar no quadro dos resultados, não se registaram diferenças significativas entre os tratamentos, sendo-o porém, as diferenças entre as fases de crescimento; nestas verifica-se um aumento crescente da % MS. Comparando os valores dos dois anos, observa-se que são inferiores no primeiro, na
fase inicial, e no segundo, na última fase do ciclo.

No que respeita aos teores em MO, a análise de variância revela diferenças significativas entre tratamentos, apenas no primeiro ano, para a primeira fase de crescimento do pasto. Como se pode observar no quadro A3.22, o teor

![Gráfico](image)

Fig. 3.7 Evolução do teor em MS (%).

em MO do tratamento "A" é inferior aos restantes. Coincide também, que no período transcorrido até à data de observação, a pastagem no tratamento "A" teve crescimentos reduzidos (figura 3.4), pelo que, a disponibilidade de erva naquele momento de colheita, era baixa. Estas considerações levam-nos a concluir que as diferenças observadas serão talvez devidas a uma deficiente colheita das amostras, com inclusão de terra, conduzindo à elevação do teor em cinzas na análise.

Quanto à evolução dos teores de MO ao longo do ciclo, representado gráficamente na figura 3.8, a análise de variância revelou existirem diferenças
significativas para as fases de crescimento e para a respectiva interação. Como se pode observar (quadro A3.22), os valores vão aumentando, verificando-se em paralelo a diminuição proporcional do teor em cinzas, como aliás seria de esperar (ver ponto 2.2.4).

Os teores de proteína bruta do pasto, apresentaram diferenças significativas entre os tratamentos (quadro A3.22), a partir do fim do Inverno, sendo superiores nas pastagens semeadas com e sem mobilização ("A" e "B"), inferiores para a testemunha ("D") e não se detectando diferenças entre a pastagem "B" e a natural fertilizada ("C"). Embora estas observações só se tenham confirmado aos 130 dias do ciclo, é de referir que o valor P calculado na análise de variância para os 165 dias (quadro A3.27) é muito próximo de P tabelado, devendo-se ao aumento do erro experimental à diminuição da eficiência dos blocos; a não detecção de significância das diferenças observadas, é assim explicada.
Fig. 3.9 Evolução do teor em PB (% MS).

pelo baixo número de repetições.

A evolução dos teores de PB ao longo do ciclo, uma vez que as análises de variância confirmaram como significativas as diferenças entre as fases de crescimento, são estuadas por regressão, cuja representação se apresenta na figura 3.9. Como se pode observar, verificou-se um aumento dos valores até a Primavera, momento a partir do qual os teores em PB registaram um decréscimo contínuo.

Quanto aos teores de ADF, verificou-se, analogamente à MO, diferenças significativas entre tratamentos, no primeiro ano, na primeira colheita efectuada. Estes resultados serão, sem dúvida, devidos ao erro já citado anteriormente e confirmado pelo elevado teor em cinzas. Nas restantes fases, as análises de variância não revelaram diferenças significativas entre tratamentos. A análise de variância combinada (quadro A3.30), confirmou existirem diferenças altamente e muito significativas, para as fases de crescimento e para interacção,
respeitivamente. Na figura 3.10, apresenta-se o estudo da evolução dos teores de ADF, através de regressão. Como se pode observar, existe uma tendência para que o aumento dos valores na pastagem natural testemunha ("D") e com fertilização ("C"), seja mais rápido do que nos outros tratamentos.

![Diagrama de evolução do ADF (% MM)](attachment:image)

Fig. 3.10 Evolução do ADF (% MM).

Os valores da digestibilidade "in vitro" da MS (quadro A3.22), apresentaram diferenças significativas entre os tratamentos, a partir do fim do Inverno. No primeiro ano, a pastagem de trevo subterrâneo com mobilização total apresenta valores superiores às naturais (testemunha e fertilizada), que não exibem diferenças entre si; a pastagem com mobilização mínima apresenta-se apenas superior à testemunha, não evidenciando diferenças nem para a natural fertilizada, nem para a de trevo subterrâneo com mobilização total; estas diferenças desaparecem no final do ciclo. No segundo ano, a superioridade da pastagem com mobilização total, em relação aos dois tratamentos de pastagem natural,
mantêm-se na última colheita efectuada. De acrescentar ainda que, os valores registados na primeira fase de crescimento, deverão estar subvalorizados devido ao excessivo teor de cinzas, atrás referido.

A análise de variância combinada (quadro A3.34), revelou diferenças muito significativas entre os valores de digestibilidade das fases de crescimento. Na figura 3.11, estão representadas as regressões respectivas.

![Gráfico da digestibilidade "in vitro" da MS (%).](image)

Fig. 3.11 Evolução dos valores da digestibilidade "in vitro" da MS (%).

3.4.2. Discussão

O teor em MS do pasto, aos 106 dias (16,12%), é concordante com o apresentado por ABREU et al. (1982): 16,2%. No final do ciclo (165 dias)
o valor que esses mesmos autores apresentam, é superior em cerca de 6 unidades percentuais. A diferença neste último valor pode ser devida ao facto de ABREU et al. (1982) não submeterem os talhões a pastoreio\(^1\) o que no nosso ensaio se verificou a partir dos 110 dias. O pastoreio terá provocado a ocorrência de um maior número de folhas jovens, que devido ao elevado teor em água, serão responsáveis pelas diferenças observadas.

Os teores em PB, aos 165 dias do ciclo, são mais elevados que os apresentados por ABREU et al. (1982), além de se ter verificado que a sua evolução ao longo do tempo não é linear. Estes factos podem ser explicados pelo pastoreio, pela evolução da composição botânica (figura 3.2) e pelas diferenças ambientais entre as localizações dos ensaios. De notar que, na fase final do ciclo a proporção de leguminosas foi superior aos máximos estimados para as arráiveas. Os valores encontrados para a pastagem de trevo subterrâneo ("A") e sua evolução ao longo do ciclo, são próximos dos referidos por ALLDEN (1981).

A composição botânica dos vários tratamentos, poderá ser a causa das diferenças observadas entre os seus teores proteicos, uma vez que, como referem GARCIA CIUDAD et al. (1984), o teor em PB das variedades comerciais de trevo subterrâneo não difere significativamente do das espécies autóctones.

Comparando os resultados dos dois anos, na fase inicial verifica-se que os teores em PB, ADF e os valores da digestibilidade, são mais baixos no segundo. Este facto poderá dever-se simultaneamente, a duas causas: Maior inclusão de terra nas amostras de segundo ano (ver os teores em cinzas), e pela presença de resíduos de pasto seco do ano anterior. ALLDEN (1981), apresenta uma curva de evolução dos valores de digestibilidade, cujo primeiro ramo é ascendente (fim de Outono – Inverno) sendo o segundo descendente, o que confir

\(^1\) Para determinação da composição química, ABREU et al. (1982) realizaram um ou dois cortes por ano.
ria em parte, as nossas observações.

Como síntese, podemos afirmar que as três técnicas de melhoramento ensaiadas provocaram, a partir do final do Inverno, um aumento do teor proteico do pasto natural, sendo mais elevado nas pastagens semeadas ("A" e "B"). Verifica-se ainda, que as técnicas utilizadas, induzem a um aumento dos valores da digestibilidade a partir da mesma época, prolongando o período a partir do qual se verifica a sua diminuição.

Os efeitos nomeados ficarão a dever-se, possivelmente e entre outras causas, ao efeito da fertilização sobre as espécies também presentes na pastagem natural (diferente composição química provocada por uma nutrição adequada; alongamento dos ciclos vegetativos), à composição botânica a que os tratamentos deram origem, e à introdução de variedades comerciais (em "A" e "B") com uma grande variabilidade na duração dos ciclos.

3.5. Produção de proteína bruta

3.5.1. Resultados

No quadro A3.42 apresentam-se os valores médios diários da produção de proteína bruta por hectare, entre vários períodos de crescimento. No Inverno, a análise de variância (quadro A3.43) não permite detectar diferenças significativas entre tratamentos, embora as regressões efectuadas (figura 3.12) denotem uma tendência nesse sentido. A causa poderá residir nos problemas apontados anteriormente acerca do delineamento experimental.

Na Primavera encontraram-se diferenças significativas entre os tratamentos: As pastagens semeadas ("A" e "B") mostraram-se com uma produtividade diária superior, relativamente às naturais ("C" e "D").

- 81 -
Fig. 3.12 Produção diária de PB (Kg. ha\(^{-1}\)).

A análise de variância combinada (quadro A3.44), revelou existirem diferenças significativas entre as fases de crescimento, pelo que se procedeu ao seu estudo mediante regressão (Figura 3.12).

Do quadro A3.45, constam os valores da produção total de PB por hectare, representados graficamente na figura 3.13. As análises de variância respectivas encontram-se nos quadros A3.46 e A3.47.

Como se pode observar, apenas no segundo ano encontramos diferenças significativas entre os tratamentos, podendo-se verificar que as técnicas ensaiadas incrementaram a produção de PB por hectare. A produção da pastagem de trevo subterrâneo com mobilização total superiorizou a da pastagem natural fertilizada, não se detectando diferenças significativas entre qualquer uma destas e o tratamento "B".

- 82 -
3.5.2. Discussão

Quanto à produção diária de proteína bruta, durante o Inverno do primeiro ano, as análises de variância não nos permitiram detectar diferenças significativas, embora se possa prever que estas existam. Nesse caso, esta observação estaria de acordo com o facto de não se terem encontrado diferenças no teor proteico mas sim no crescimento diário em termos de MS. Assim sendo, também será de esperar que nos anos seguintes não haja uma menor produtividade das pastagens semeadas "A" e "B", pois já se verificou que o crescimento diário no período invernal aumentou do primeiro para o segundo ano, dependendo da evolução da pastagem.

Na Primavera, as diferenças encontradas entre os valores de produção diária de PB dos tratamentos, coincidem com aquelas verificadas na composição botânica e no teor em PB do pasto.
Os valores da produção total de PB por hectare e ano, estão de acordo com os que ABREU et al. (1982) apresentam.

Os resultados sugerem que a produção de PB depende da composição botânica, da quantidade de MS produzida tal como GARCIA CIUDAD et al. (1984) referem, e do teor proteico do pasto. As técnicas de melhoramento ensaiadas, dão origem a pastos com maior ou menor produção de PB, de acordo com a forma com que influenciam aqueles factores:

- A fertilização da pastagem natural provoca um aumento da PB produzida em cerca de 270 kg por hectare e ano; a sementeira de trevo subterrâneo com mobilização total, em 500 kg; a sementeira com mobilização parcial, deverá situar-se num valor intermédio, não tendo sido possível porém, confirmá-lo.

3.6. Produção de matéria seca digestível

3.6.1. Resultados

No quadro A3.48 (anexo 3) apresentam-se os resultados dos crescimentos médios diários, em várias fases do crescimento, em termos de MS digestível. As análises de variância respectivas (quadros A3.49 a A3.50), revelaram diferenças significativas entre os tratamentos, apenas no início da Primavera: As pastagens semeadas ("A" e "B"), tiveram crescimentos superiores em cerca de 10 kg MS digestível por hectare e dia, relativamente à testemunha.

No período do fim de Inverno no qual a situação foi inversa à citada anteriormente, e no final da Primavera onde a superioridade de "A" e "B" foi maior, os valores de "F" calculados (quadro A3.49 de análise de variância) são muito próximos dos tabelados. Nestes dois períodos, os coeficientes de variação dos valores (quadro A3.48) foram de 43% e 28% respectivamente para o primeiro e segundo. O facto de não se confirmarem como significativas as
diferenças entre tratamentos, nos períodos referidos, poderá assim dever-se ao delineamento experimental.

A produção total de MS digestível por hectare e ano, consta do quadro A3.51, estando os valores representados graficamente na figura 3.14.

Como se pode observar na figura, as análises de variância (A3.52 e A3.53) não permitiram confirmar as diferenças verificadas entre tratamentos no primeiro ano, sendo porém altamente significativas no segundo. Neste último, a produção da pastagem semeada com mobilização total ("A") superiorizou em cerca de 600 kg MS digestível às pastagens semeadas com mobilização mínima ("B") e natural fertilizada ("C"), que produziram em média cerca de 1200 kg mais do que a testemunha.
3.6.2.Discussão

A produção de MS digestível reflecte o efeito dos tratamentos na produtividade e na digestibilidade do pasto. Assim sendo, verificou-se que o produto de pequenas diferenças, não significativas, entre aqueles parâmetros resulta em diferenças significativas entre tratamentos. Foi o caso dos tratamentos "A" e "B", cuja produção total de MS digestível se revelou superior no primeiro.

Podemos então afirmar que, os tratamentos ensaiados tiveram um efeito na MS digestível, através da maior produtividade e da diferente composição química do pasto, a que induziram.
Conclusões
Como conclusões gerais pode-se afirmar que as técnicas ensaiadas levaram a um aumento da produtividade e qualidade do pasto produzido:

- A superioridade da pastagem semeada com mobilização total ("A") sobre as pastagens naturais ("C" e "D"), evidencia-se apenas a partir do 2º ano. Este facto levou-nos a prosseguir o trabalho experimental, estando previstos mais dois anos de ensaio:

 - a pastagem semeada com mobilização mínima ("B") situou-se numa situação intermédia entre o tratamento "A" e a pastagem natural fertilizada ("C"), não diferindo significativamente, nos parâmetros analisados, de "A" ou de "C";

 - sobre a pastagem natural, é de referir as suas potencialidades de resposta à fertilização.

Sobre a utilização destas pastagens, tomando como base os valores da produção de MS e de PB, efectuou-se uma simulação para avaliar o encabeçamento permitido por ambos os parâmetros. Considerou-se o tratamento "B" conjuntamente com o "C". Determinaram-se os encabeçamentos permitidos pela disponibilidade diária de MS nos períodos com menores crescimentos, tendo sido comparados com o número de animais cujas necessidades eram satisfeitas pelo nível de PB, no mesmo momento. Os resultados obtidos (quadro 3.1) permitem concluir que o crescimento invernal (MS disponível), é o factor limitante do aumento dos encabeçamentos. Mais ainda se verifica, que os encabeçamentos praticados tradicionalmente na região (ver quadro 1.1 do capítulo 1), coincidem com os que foram calculados para a pastagem natural, durante o período já referido. Torna-se assim perceptível, que os agricultores ajustam empiricamente o encabeçamento, aos menores crescimentos diários da pastagem natural, talvez com o intuito de meno-
res riscos ou "despesas". Considerando este facto, poderemos concluir que a intensificação da produção ovina e caprina na região, numa primeira fase, estará mais dependente do aumento e melhoria dos níveis de suplementação invernal, do que propriamente do melhoramento das pastagens naturais. Como sugestão podemos apontar para o estudo da suplementação, através de pastoreio directo, com cereais secundários (centeio e aveia).

Determinou-se ainda o limite dos encabeçamentos, determinados pela produção anual (quadro 3.1).

A simulação realizada permite antever a mais fácil intensificação dos sistemas tradicionais, através da fertilização das pastagens naturais ou da sementeira de trevo subterrâneo com mobilização mínima: O aumento do encabeçamento não terá que ser tão brusco (permitindo uma adaptação gradual dos produtores a novos sistemas de maneio), envolverá custos médios, sendo os riscos menores.

QUADRO 3.1

Encabeçamentos estimados para os tratamentos ensaiados, tomando como base o período onde os crescimentos médios diários foram mais baixos; encabeçamentos estimados através da produção total anual¹. Os valores médios de ingestão e da necessidades em PB foram calculados para uma ovelha de 40 kg com um parto simples anual (N.R.C., 1969).

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Min. MS</th>
<th>Min. PB</th>
<th>Total MS</th>
<th>Total PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,0</td>
<td>8,0</td>
<td>5,6</td>
<td>18,4</td>
</tr>
<tr>
<td>B e C</td>
<td>1,2</td>
<td>4,9</td>
<td>5,4</td>
<td>15,7</td>
</tr>
<tr>
<td>D</td>
<td>1,2</td>
<td>4,8</td>
<td>3,5</td>
<td>8,3</td>
</tr>
</tbody>
</table>

¹ Considerou-se apenas 50% pois é o ponto de equilíbrio entre a remoção de pasto, a persistência e produção.
Ainda sobre a utilização das pastagens, verificámos a necessidade de proceder a análises do pasto após o período de pastoreio, o que poderia fornecer informações acerca do seu manejo. Assim, para a continuação do trabalho experimental, propomos essa modificação na metodologia.

As considerações efectuadas são válidas para as condições de ensaio, mas deverão ser tomadas apenas como uma análise inicial, pois a evolução da flora será determinante da validade destas afirmações. Nas pastagens semeadas torna-se indispensável estudar a persistência das espécies introduzidas; na pastagem natural fertilizada, será necessário avaliar se os efeitos observados não são apenas o início da resposta ao tratamento efectuado. De facto, só com dados de 3 a 5 anos se poderá realizar uma simulação que permita equacionar, sob o ponto de vista de rentabilidade, todo o complexo sistema que se poderá estabelecer, nestas condições de exploração.
Referências bibliográficas

1 Anexo

Quadros de análises fitossociológicas de pastagens naturais da região de Castelo Branco.
ANÁLISES FITOSOCIOLÓGICAS

<table>
<thead>
<tr>
<th>NOME CIENTÍFICO</th>
<th>Inv. 1</th>
<th>Inv. 2</th>
<th>Inv. 3</th>
<th>Inv. 4</th>
<th>Inv. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q S</td>
<td>Q S</td>
<td>Q S</td>
<td>Q S</td>
<td>Q S</td>
</tr>
<tr>
<td>GRAMINEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Briza maxima L.</td>
<td>+</td>
<td>1.1</td>
<td>2.3</td>
<td>1.2</td>
<td>+</td>
</tr>
<tr>
<td>Brachypodium distachyum (L.) Beauv</td>
<td>1.1</td>
<td>2.2</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrostis castellana Boiss. et Reuter</td>
<td>2.3</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrostis pourretii Will</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena sp</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>+</td>
</tr>
<tr>
<td>Avena barbata Pott ex Link</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus sp</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Bromus hordeaceus L.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaudinia fragilis (L.) Beauv</td>
<td>2.2</td>
<td>2.2</td>
<td></td>
<td>+</td>
<td>1.1</td>
</tr>
<tr>
<td>Vulpia bromoides L.</td>
<td>2.1</td>
<td>1.1</td>
<td>2.3</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Vulpia ciliata Dumort</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Psilurus aristatus</td>
<td>1.2</td>
<td>+</td>
<td>1.1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Taeniatherum caput-medusae (L.) Nevski</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aegilops geniculata Roth</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEGUMINOSEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifolium arvense L.</td>
<td>2.3</td>
<td>1.1</td>
<td>+</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Trifolium campestrae Schreber</td>
<td>3.3</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Trifolium glomeratum L.</td>
<td>1.2</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifolium angustifolium L.</td>
<td>1.2</td>
<td>1.1</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Trifolium stellatum L.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifolium cherleri L.</td>
<td>1.2</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifolium subterraneum L.</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornithopus compressus L.</td>
<td>2.3</td>
<td>1.2</td>
<td>1.1</td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>Ornithopus pinnatus (Miller) Druce</td>
<td>1.2</td>
<td>1.2</td>
<td>+</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Lathyrus angulatus L.</td>
<td>1.2</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthyllis lotoides L.</td>
<td>1.1</td>
<td>+</td>
<td>+</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>NOME CIENTÍFICO</td>
<td>Inv. 1</td>
<td>Inv. 2</td>
<td>Inv. 3</td>
<td>Inv. 4</td>
<td>Inv. 5</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>LEGUMINOSEAE (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lotus sp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Lotus subbiflorus Lg.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Scorpiurus vermiculatus L.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronilla repanda (Poiret) gauss subsp dura (Cav.) Coutinho</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOSITAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthemis sp</td>
<td>1.1</td>
<td>+</td>
<td></td>
<td>+</td>
<td>1.3</td>
</tr>
<tr>
<td>Hipochaeris glabra L.</td>
<td>2.2</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tolpis barbata (L.) Gaertner</td>
<td>2.4</td>
<td>1.2</td>
<td>1.1</td>
<td>+</td>
<td>1.2</td>
</tr>
<tr>
<td>CISTACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberaria guttata (L.) Fourr</td>
<td>2.2</td>
<td>2.2</td>
<td>+</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Helianthemum ledifolium (L.) Miller</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>PLANTACINAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantago bellardi All</td>
<td></td>
<td></td>
<td>+</td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Plantago coronopus L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>CRUCIFERAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teesdalia sp</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Teesdalia coronopifolia (J.P.Bergeret) Thell</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>POLYGONACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumex bucephalophorus L.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ROSACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanguisorba magnolii (Spach) A.Braun & Bouché</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CAMPANULACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jasione montana L.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NOME CIENTÍFICO</td>
<td>Inv. 1</td>
<td>Inv. 2</td>
<td>Inv. 3</td>
<td>Inv. 4</td>
<td>Inv. 5</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>IRIDACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris sibirica L.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LILIACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipcadi serotinus (L.) Med</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEDACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesamoides canescens (L.) O.Kuntze</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARYOPHYLLACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spergula arvensis L.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABIATAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stachys arvensis (L.) L.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: Q = Quantidade; S = Sociabilidade
2 Anexo

Descrição e caracterização do solo onde decorreu o ensaio. Quadros de precipitação e temperatura.
CARACTERIZAÇÃO DO LOCAL ONDE DECORREU O ENSAIO

- Topografia: Terreno de encosta, convexa ou plana, com 1 a 18% de declive.
- Litologia: Corneanas e/ou xistos mosqueados.
- Descrição morfológica: Solo "pardo" (10/7, 5YR); franco-arenoso ou, menos frequentemente, franco-argilo-arenoso até cerca de 0,02 m; inferiormente corneana e/ou xisto mosqueado bastante alterado.

ANÁLISE DO PERFIL DO SOLO

0-8 cm - Horizonte A

Pardo (10 YR 5-6/4 (s); 10 YR 5/4 (u); franco-arenoso com alguns elementos grosseiros angulosos a subangulosos; estrutura anisiforme subangulosa fina, média e grosseira; porosidade fina a modiana; pequena a média compacidade; consistência no estado seco fraca, raízes bastante finas a médias; solo seco a fresco.

8-20 cm - Horizonte (A) B

Cor idêntica ao anterior; franco-argilo-arenoso com alguns elementos grosseiros idênticos à camada anterior; sem estrutura; porosidade fina; compacidade pequena a média; consistência no estado seco fraca; raízes bastante finas; solo seco a fresco.

20-115 cm - Horizonte C

Corneana alterada

CLASSIFICAÇÃO DO SOLO

Solo Litólico não húmico de corneanas.
QUADRO A2.1
Valores médios de precipitação (mm) do período 1924-1976, registados na Estação meteorológica de Castelo Branco e valores verificados durante o período de ensaio no posto meteorológico da E.S.A.C.E. (Qtg de N.S. Méricules).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JANEIRO</td>
<td>119,0</td>
<td>60,5</td>
<td>209,0</td>
<td></td>
</tr>
<tr>
<td>FEvereiro</td>
<td>97,3</td>
<td>124,0</td>
<td>101,9</td>
<td></td>
</tr>
<tr>
<td>MARÇO</td>
<td>109,6</td>
<td>9,6</td>
<td>54,6</td>
<td></td>
</tr>
<tr>
<td>ABRIL</td>
<td>67,4</td>
<td>45,4</td>
<td>87,6</td>
<td></td>
</tr>
<tr>
<td>MAIO</td>
<td>56,7</td>
<td>11,1</td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>JUNHO</td>
<td>29,1</td>
<td>6,9</td>
<td>18,7</td>
<td></td>
</tr>
<tr>
<td>JULHO</td>
<td>6,9</td>
<td>0,0</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>AGOSTO</td>
<td>6,7</td>
<td>0,0</td>
<td>0,6</td>
<td>25,4</td>
</tr>
<tr>
<td>SETEMBRO</td>
<td>35,7</td>
<td>3,7</td>
<td>102,3</td>
<td></td>
</tr>
<tr>
<td>OUTUBRO</td>
<td>77,8</td>
<td>1,9</td>
<td>17,8</td>
<td></td>
</tr>
<tr>
<td>NOVEMBRO</td>
<td>109,0</td>
<td>136,7</td>
<td>65,2</td>
<td></td>
</tr>
<tr>
<td>DEZEMBRO</td>
<td>103,6</td>
<td>86,8</td>
<td>36,2</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>818,8</td>
<td></td>
<td>479,6</td>
<td></td>
</tr>
</tbody>
</table>

QUADRO A2.2
Valores médios de temperatura (°C) do período 1931-1960, registados na Estação meteorológica de Castelo Branco e valores verificados durante o período de ensaio no posto meteorológico da E.S.A.C.E. (Qtg de N.S. Méricules).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JANEIRO</td>
<td>7,9</td>
<td>6,5</td>
<td>6,4</td>
<td></td>
</tr>
<tr>
<td>FEvereiro</td>
<td>7,2</td>
<td>8,1</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>MARÇO</td>
<td>11,6</td>
<td>10,3</td>
<td>11,5</td>
<td></td>
</tr>
<tr>
<td>ABRIL</td>
<td>14,0</td>
<td>19,0</td>
<td>13,2</td>
<td></td>
</tr>
<tr>
<td>MAIO</td>
<td>16,9</td>
<td>17,2</td>
<td>16,5</td>
<td></td>
</tr>
<tr>
<td>JUNHO</td>
<td>21,4</td>
<td>20,8</td>
<td>21,4</td>
<td></td>
</tr>
<tr>
<td>JULHO</td>
<td>24,6</td>
<td>25,1</td>
<td>24,4</td>
<td></td>
</tr>
<tr>
<td>AGOSTO</td>
<td>24,4</td>
<td>23,3</td>
<td>21,2</td>
<td>24,0</td>
</tr>
<tr>
<td>SETEMBRO</td>
<td>21,5</td>
<td>23,4</td>
<td>20,1</td>
<td></td>
</tr>
<tr>
<td>OUTUBRO</td>
<td>16,5</td>
<td>17,3</td>
<td>16,7</td>
<td></td>
</tr>
<tr>
<td>NOVEMBRO</td>
<td>11,6</td>
<td>10,0</td>
<td>9,8</td>
<td></td>
</tr>
<tr>
<td>DEZEMBRO</td>
<td>8,4</td>
<td>7,7</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>15,6</td>
<td></td>
<td>14,3</td>
<td></td>
</tr>
</tbody>
</table>
3 Anexo

Quadros de resultados e de análises de variância.
QUADRO A3.1 Emergências (número médio de leguminosas por m²) após o início do ensaio (21/11/85).

<table>
<thead>
<tr>
<th></th>
<th>P.S. Semeado (A)</th>
<th>P.S. Mob. Mínima (B)</th>
<th>P. Nat. adubada (C)</th>
<th>P. Natural (D)</th>
<th>Diferenças entre tratamentos</th>
<th>L.S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>194,5</td>
<td>1 005,2</td>
<td>1 375,4</td>
<td>1 120,4</td>
<td>P < 0,01</td>
<td>404,2 612,4</td>
<td></td>
</tr>
</tbody>
</table>

QUADRO A3.2 Análise de variância (RCB) das emergências após sementeira.

<table>
<thead>
<tr>
<th>CAUSAS</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>791217,4</td>
<td>395608,7</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>2343273,0</td>
<td>781090,9</td>
<td>**</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>245611,9</td>
<td>40935,32</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>3380102,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 21.89958% ns = Não significativo
* ** *** = P < 0,05 0,01 0,001

QUADRO A3.3 Composição botânica (t de cada agrupamento botânico em relação ao total) determinada pelo método Levy-Point, em várias fases de crescimento do pasto, 1º ano.

<table>
<thead>
<tr>
<th>Agrupamento Botânico</th>
<th>Dias após semeamento (d)</th>
<th>P. Semeado (A)</th>
<th>P. S. Mob. Mínima (B)</th>
<th>P. Nat. adubada (C)</th>
<th>P. Natural (D)</th>
<th>Diferenças entre tratamentos</th>
<th>C.V. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFRAPÉRIAS</td>
<td>72</td>
<td>19,3a</td>
<td>61,8a</td>
<td>53,5a</td>
<td>64,4a</td>
<td>ns</td>
<td>7,64</td>
</tr>
<tr>
<td>106</td>
<td>44,0a</td>
<td>52,9a</td>
<td>44,6a</td>
<td>53,3a</td>
<td>ns</td>
<td>13,08</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>55,1c</td>
<td>39,6c</td>
<td>34,5c</td>
<td>42,4c</td>
<td>ns</td>
<td>8,75</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>28,4c</td>
<td>24,7c</td>
<td>30,3c</td>
<td>41,7c</td>
<td>ns</td>
<td>16,98</td>
<td></td>
</tr>
<tr>
<td>Diferenças entre fases de crescimento (d)</td>
<td>P < 0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>24,9a</td>
<td>22,2a</td>
<td>28,0a</td>
<td>26,3a</td>
<td>ns</td>
<td>14,21</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>42,7a</td>
<td>32,1a</td>
<td>25,8a</td>
<td>22,2a</td>
<td>ns</td>
<td>25,37</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>51,9a</td>
<td>47,8a</td>
<td>42,2a</td>
<td>23,6a</td>
<td>P < 0,001</td>
<td>7,72</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>52,1a</td>
<td>51,6a</td>
<td>50,6c</td>
<td>22,3c</td>
<td>P < 0,05</td>
<td>16,00</td>
<td></td>
</tr>
<tr>
<td>Diferenças entre fases de crescimento (d)</td>
<td>P < 0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3,8a</td>
<td>18,0a</td>
<td>16,5a</td>
<td>11,1b</td>
<td>P < 0,02</td>
<td>10,82</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>13,3c</td>
<td>15,0a</td>
<td>23,6c</td>
<td>24,2c</td>
<td>ns</td>
<td>16,25</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>13,0d</td>
<td>12,8d</td>
<td>23,3c</td>
<td>31,7c</td>
<td>P < 0,01</td>
<td>12,92</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>9,7c</td>
<td>11,5c</td>
<td>19,3e</td>
<td>18,0e</td>
<td>P < 0,05</td>
<td>26,76</td>
<td></td>
</tr>
</tbody>
</table>

(*) N = 1021/1022
(2) Diferenças nas médias transformadas em uma QP. Dentes de cada fase de crescimento os valores das transformações mantiveram-se isto mesmo devido a não terem diferenças significativas para os valores brutos, as fases de crescimento unidos por um traco, não apresentaram diferenças significativas.
QUADRO A3.4 Análises de variância (RCB) dos valores transformados (arc sen√) da % de GRAMÍNEAS, no 1º ano, em várias fases de crescimento (referenciadas à data de germinação).

<table>
<thead>
<tr>
<th>CAUSAS</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>93,29962</td>
<td>46,64981</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>105,7426</td>
<td>35,24752</td>
<td>2,197553</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>96,23666</td>
<td>16,03944</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>295,2789</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

72 dias

106 dias

<table>
<thead>
<tr>
<th>CAUSAS</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>6,123037</td>
<td>3,061519</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>57,38487</td>
<td>19,12829</td>
<td>0,5510971</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>208,2568</td>
<td>34,70947</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>271,7648</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

130 dias

<table>
<thead>
<tr>
<th>CAUSAS</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>127,3562</td>
<td>63,67810</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>45,03879</td>
<td>15,01293</td>
<td>1,526005</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>59,02836</td>
<td>9,838061</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>231,4234</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

165 dias

<table>
<thead>
<tr>
<th>CAUSAS</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>214,5232</td>
<td>107,2616</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>177,1767</td>
<td>59,05890</td>
<td>1,989992</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>178,0677</td>
<td>29,67795</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>569,7676</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo
QUADRO A3.5 Análise de variância combinada (RCB) dos valores transformados (arc sen √p) da % de GRAMÍNEAS no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases de Crescimento</td>
<td>3</td>
<td>2385,891</td>
<td>795,2970</td>
<td>14,41728**</td>
</tr>
<tr>
<td>Rep. dentro fases cresc.</td>
<td>8</td>
<td>441,3020</td>
<td>55,16275</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>154,4223</td>
<td>51,47416</td>
<td>2,281026 ns</td>
</tr>
<tr>
<td>Fases de cres. x tratamento</td>
<td>9</td>
<td>230,9204</td>
<td>25,65783</td>
<td>1,137001 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>24</td>
<td>541,5896</td>
<td>22,56623</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>47</td>
<td>3754,126</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 3,016647
ns = Não significativo
* ** *** = P < 0,05 0,01 0,001

QUADRO A3.6 Análises de variância (RCB) dos valores transformados (arc sen √p) da % de LEGUMINOSAS, no 1º ano, em várias fases de crescimento (referenciadas à data de germinação).

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>98,86639</td>
<td>49,43320</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>37,49991</td>
<td>12,49997</td>
<td>0,7398509</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>101,3702</td>
<td>16,89503</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>237,7365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

106 dias				
Repetições	2	8,625858	4,312929	ns
Tratamentos	3	287,6921	95,89736	1,351325
Erro	6	425,7926	70,96543	
TOTAL	11	722,1105		

130 dias				
Repetições	2	67,67331	33,83666	** ** **
Tratamentos	3	530,2110	176,7370	18,82036
Erro	6	56,34442	9,390737	
TOTAL	11	654,2287		

165 dias				
Repetições	2	9,904022	4,952011	**
Tratamentos	3	1170,696	390,1653	7,972416 *
Erro	6	293,6364	48,93940	
TOTAL	11	1474,036		

ns = Não significativo
* ** *** = P < 0,05 0,01 0,001
QUADRO A3.7 Análise de variância combinada (RCB) dos valores transformados (arc sen√p) da % de LEGUMINOSAS no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases de Crescimento</td>
<td>3</td>
<td>1565,192</td>
<td>521,7306</td>
<td>22,55284 **</td>
</tr>
<tr>
<td>Rep. dentro fases cresc.</td>
<td>8</td>
<td>185,0696</td>
<td>23,13370</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>1421,616</td>
<td>473,9385</td>
<td>12,96769 **</td>
</tr>
<tr>
<td>Fases de cresc. tratamentos</td>
<td>9</td>
<td>604,0832</td>
<td>67,12023</td>
<td>1,836516 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>24</td>
<td>877,1426</td>
<td>35,54765</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>47</td>
<td>4653,304</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 5,211455

ns = Não significativo

* ** *** = P < 0.05 0.01 0.001

QUADRO A3.8 Análises de variância (RCB) dos valores transformados (arc sen√p) da % de "DOUTRAS PLANTAS", no 1º ano, em várias fases de crescimento (referenciadas à data de germinação).

72 dias

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>159,5851</td>
<td>79,79255</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>209,0285</td>
<td>69,68618</td>
<td>13,39891 **</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>31,20531</td>
<td>5,200885</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>399,8490</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

106 dias

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>0,317282</td>
<td>0,1586434</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>155,9332</td>
<td>51,97772</td>
<td>2,986336 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>104,4211</td>
<td>17,40518</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>206,6815</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

130 dias

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>13,00146</td>
<td>6,500738</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>460,3331</td>
<td>153,4444</td>
<td>11,14950 **</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>82,97465</td>
<td>13,76244</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>555,9092</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

165 dias

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>304,9025</td>
<td>152,6513</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>606,3142</td>
<td>202,1047</td>
<td>5,026951 *</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>241,2254</td>
<td>40,20424</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>1152,442</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo

* ** *** = P < 0.05 0.01 0.001

- 115 -
QUADRO A3.9

Análise de variância combinada (RCB) dos valores transformados (arc sen √P) de "OUTRAS PLANTAS" no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases de Crescimento</td>
<td>3</td>
<td>224,4782</td>
<td>74,82606</td>
<td>1,252826 NS</td>
</tr>
<tr>
<td>Rep. dentro fases cresc.</td>
<td>8</td>
<td>477,9064</td>
<td>59,72580</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>1102,024</td>
<td>367,3414</td>
<td>19,18915 **</td>
</tr>
<tr>
<td>Fases de cresc. x tratamento</td>
<td>9</td>
<td>339,6158</td>
<td>36,62386</td>
<td></td>
</tr>
<tr>
<td>Erro</td>
<td>24</td>
<td>459,4355</td>
<td>19,14319</td>
<td>1,913154 NS</td>
</tr>
</tbody>
</table>

TOTAL 47 2593,360

F = 2,921301 ne = Não significativo
 * ** *** = P < 0,05 0,01 0,001

QUADRO A3.10

Valores médios do grau de cobertura do solo pelo pasto (%) da superfície, em várias fases de crescimento (referenciadas à data de germinação), no 1º ano.

<table>
<thead>
<tr>
<th>Dias após germinação</th>
<th>P. Semeadas (A)</th>
<th>P. Hidr. Minima (B)</th>
<th>P. Estabelecidas (C)</th>
<th>P. Natural (D)</th>
<th>Diferenças entre tratamentos L.S.D. 0,05 0,01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diferenças entre fases crescimento

L.S.D. 0,05 0,01

Notas:
- P. Semeadas: médias de porcentagem de cobertura do solo
- P. Hidr. Minima, P. Estabelecidas e P. Natural: médias de porcentagem de cobertura do solo
- Diferenças entre tratamentos: L.S.D. de comparação de médias

(*) germinação 10/11/95 ne = Não significativo
 * ** *** = P < 0,05 0,01

- 116 -
QUADRO A3.11 Análises de variação (RCB) do grau de cobertura do solo pelo pasto, no 1º ano, em várias fases de crescimento (referenciadas à data de germinação).

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>21,16667</td>
<td>10,58333</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>94,41667</td>
<td>31,47222</td>
<td>0,7253521</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>260,3333</td>
<td>43,38889</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>375,9167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>66,66667</td>
<td>33,33333</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>14,0625</td>
<td>4,6875</td>
<td>0,25 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>112,5</td>
<td>18,75</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>193,2292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>7,291667</td>
<td>3,645833</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>25,00</td>
<td>8,333333</td>
<td>5,333333 *</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>9,375</td>
<td>1,5625</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>41,66667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>7,291667</td>
<td>3,645833</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>9,895833</td>
<td>3,29861</td>
<td>1,461538</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>13,54167</td>
<td>2,256944</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>30,72917</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo

* = P < 0,05
QUADRO A3.12 Análise de variância combinada (RCB) do grau de cobertura do solo pelo pasto, 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases ao Crescimento</td>
<td>3</td>
<td>981,625</td>
<td>327,2083</td>
<td>25,55899***</td>
</tr>
<tr>
<td>Rep.dentro fases cres.</td>
<td>8</td>
<td>102,4167</td>
<td>12,80208</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>30,375</td>
<td>10,125</td>
<td>0,6140240ns</td>
</tr>
<tr>
<td>Fases cres. x tratam.</td>
<td>9</td>
<td>113</td>
<td>12,55556</td>
<td>0,7614235ns</td>
</tr>
<tr>
<td>Erro</td>
<td>24</td>
<td>395,75</td>
<td>16,48958</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>47</td>
<td>1623,167</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 1,444444 ns = Não significativo P < 0,001

QUADRO A3.13 Crescimentos médios diários (MS. ha⁻¹, dia⁻¹) entre vários períodos vegetativos.

<table>
<thead>
<tr>
<th>Dias após Germinação</th>
<th>P. Sesameu (a)</th>
<th>F.S. Momb. Minioso (b)</th>
<th>P. Natal abalada (c)</th>
<th>P. Natal Natural (d)</th>
<th>Diferenças entre Tratamentos</th>
<th>L.S.D. 0,05</th>
<th>L.S.D. 0,01</th>
<th>C.V. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ANO (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 72</td>
<td>6,13</td>
<td>5,43</td>
<td>6,57</td>
<td>6,53</td>
<td>**</td>
<td>2,45</td>
<td>4,46</td>
<td>35,3</td>
</tr>
<tr>
<td>72 - 106</td>
<td>5,23</td>
<td>1,37</td>
<td>5,87</td>
<td>6,27</td>
<td>*</td>
<td>2,45</td>
<td>4,46</td>
<td>35,3</td>
</tr>
<tr>
<td>106 - 116</td>
<td>5,73</td>
<td>6,10</td>
<td>5,43</td>
<td>3,37</td>
<td>ns</td>
<td>2,45</td>
<td>4,46</td>
<td>35,3</td>
</tr>
<tr>
<td>116 - 150</td>
<td>26,33</td>
<td>24,20</td>
<td>15,17</td>
<td>15,67</td>
<td>ns</td>
<td>2,86</td>
<td>4,88</td>
<td>43,5</td>
</tr>
<tr>
<td>150 - 165</td>
<td>67,63</td>
<td>80,93</td>
<td>74,73</td>
<td>73,43</td>
<td>ns</td>
<td>28,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 - 201</td>
<td>43,33</td>
<td>38,42</td>
<td>43,67</td>
<td>19,17</td>
<td>*</td>
<td>15,63</td>
<td>21,79</td>
<td>21,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 ANO (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 61</td>
<td>8,50</td>
<td>5,35</td>
<td>7,28</td>
<td>4,17</td>
<td>ns</td>
<td>2,67</td>
<td>4,67</td>
<td>21,1</td>
</tr>
<tr>
<td>61 - 96</td>
<td>10,88</td>
<td>12,99</td>
<td>12,45</td>
<td>7,38</td>
<td>ns</td>
<td>29,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 - 120</td>
<td>5,23</td>
<td>3,27</td>
<td>2,53</td>
<td>3,84</td>
<td>ns</td>
<td>15,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 - 155</td>
<td>36,38</td>
<td>25,32</td>
<td>16,25</td>
<td>22,45</td>
<td>**</td>
<td>5,73</td>
<td>8,74</td>
<td>11,2</td>
</tr>
<tr>
<td>155 - 170</td>
<td>91,34</td>
<td>100,80</td>
<td>88,12</td>
<td>78,99</td>
<td>ns</td>
<td>13,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 - 211</td>
<td>63,22</td>
<td>50,97</td>
<td>45,49</td>
<td>17,58</td>
<td>***</td>
<td>8,46</td>
<td>12,87</td>
<td>9,6</td>
</tr>
</tbody>
</table>

(a) 0 = 10/11/85 ns = não significativo
(b) 0 = 15/10/86 * = Signif. a F<0,05 ** = Signif. P<0,01 *** = Signif. a P<0,001
QUADRO A3.14 Análises de variância (RCB) dos crescimentos médios diários do pasto, 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>2,451667</td>
<td>1,225833</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>2,7425</td>
<td>0,9141667</td>
<td>1,894646 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>2,895</td>
<td>0,4825</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>8,089167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 - 106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>11,07167</td>
<td>5,535833</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>48,03</td>
<td>16,01</td>
<td>7,358100 *</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>13,055</td>
<td>2,175833</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>72,15667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 - 116 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>28,38167</td>
<td>14,19083</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>11,44917</td>
<td>3,816389</td>
<td>0,473537 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>48,35833</td>
<td>8,059722</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>88,18917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 - 150 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>80,53167</td>
<td>40,26583</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>298,2692</td>
<td>99,42306</td>
<td>2,892891 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>206,2083</td>
<td>34,36806</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>585,0092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 - 165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>2876,432</td>
<td>1438,216</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>267,99</td>
<td>89,33</td>
<td>0,1705294 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>3143,035</td>
<td>523,8392</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>6287,457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 - 201 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>43,51167</td>
<td>21,75583</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>1214,403</td>
<td>404,8008</td>
<td>6,601897 *</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>367,895</td>
<td>61,31583</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>1625,809</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[P < 0.05 \]

\[ns = Não significativo \]
QUADRO A3.15 Análises de variância (ANOVA) dos crescimentos médios diários do pasto, no 20. ano.

<table>
<thead>
<tr>
<th>CAUSAS DE VARIÂNCIA</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 61 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>2,177698</td>
<td>1,088849</td>
<td></td>
</tr>
<tr>
<td>Tratamento</td>
<td>3</td>
<td>33,69751</td>
<td>11,23250</td>
<td>2,96819 *</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>10,703030</td>
<td>1,783838</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>46,57823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61 - 96 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>128,3113</td>
<td>64,15566</td>
<td></td>
</tr>
<tr>
<td>Tratamento</td>
<td>3</td>
<td>57,32141</td>
<td>19,10714</td>
<td>1,86973 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>61,30721</td>
<td>10,21787</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>246,9399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 - 120 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>1,058111</td>
<td>0,529055</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>11,73010</td>
<td>3,910033</td>
<td>2,756438 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>8,511056</td>
<td>1,418509</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>21,2927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 - 155 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>102,5945</td>
<td>51,29723</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>540,5589</td>
<td>180,1863</td>
<td>21,76016 **</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>49,68336</td>
<td>8,280559</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>692,8367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155 - 170 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>2061,654</td>
<td>1030,827</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>729,3381</td>
<td>243,1127</td>
<td>1,765676 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>826,1291</td>
<td>137,6882</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>3617,122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 - 211 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>356,0117</td>
<td>178,0058</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>3352,868</td>
<td>1117,623</td>
<td>61,84639 ***</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>108,4257</td>
<td>18,07094</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>3817,305</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo
* ** *** = F < 0.05 0.01 0.001
QUADRO A3.16 Análise de variância combinada (RCB) dos crescimentos médios diários do pasto, no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases Crescimento</td>
<td>5</td>
<td>44914,36</td>
<td>89832,871</td>
<td>35,43096 ***</td>
</tr>
<tr>
<td>Rep. dentro fases cresc.</td>
<td>12</td>
<td>3042,38</td>
<td>253,5317</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>317,606</td>
<td>105,8669</td>
<td>1,007870 ns</td>
</tr>
<tr>
<td>Fases cresc. x tratamentos</td>
<td>15</td>
<td>1535,283</td>
<td>101,6855</td>
<td>0,9680630</td>
</tr>
<tr>
<td>Erro</td>
<td>36</td>
<td>3781,464</td>
<td>105,0402</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>71</td>
<td>53381,07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$F = 8.543294$

ns = não significativo

* ** *** = $P < 0.05$ 0.01 0.001

QUADRO A3.17 Análise de variância combinada (RCB) dos crescimentos médios diários do pasto, no 2º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases Crescimento</td>
<td>5</td>
<td>64997,40</td>
<td>12999,48</td>
<td>58,82544 ***</td>
</tr>
<tr>
<td>Rep. dentro fases cresc.</td>
<td>12</td>
<td>2651,808</td>
<td>220,9840</td>
<td>**</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>1865,991</td>
<td>621,9978</td>
<td>21,03003 **</td>
</tr>
<tr>
<td>Fases cresc. x tratamentos</td>
<td>15</td>
<td>2859,520</td>
<td>196,6347</td>
<td>6,445446</td>
</tr>
<tr>
<td>Erro</td>
<td>36</td>
<td>1064,759</td>
<td>25,57565</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>71</td>
<td>73439,48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$F = 7,619214$

ns = Não significativo

* ** *** = $P < 0.05$ 0.01 0.001

QUADRO A3.18 Produção total de Matéria Seca (Kg MS. ha$^{-1}$).

<table>
<thead>
<tr>
<th>ANO</th>
<th>P. Semeado (A)</th>
<th>P. S. Mob. Mistura (B)</th>
<th>P. Nat. Aboda (C)</th>
<th>P. Natural (D)</th>
<th>Diferença entre Tratamentos</th>
<th>L.S.D. 0.05</th>
<th>L.S.D. 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6083,9</td>
<td>3920,3</td>
<td>3925,3</td>
<td>3020,5</td>
<td>**</td>
<td>1 212,5</td>
<td>1 835,9</td>
</tr>
<tr>
<td>2</td>
<td>6760,1</td>
<td>5081,3</td>
<td>4765,2</td>
<td>3295,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = não significativo

** $P < 0.01$
QUADRO A3.19 Análise de variância (RCB) da produção total de MS. no 1º ano (1985/86).

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeticões</td>
<td>2</td>
<td>705657,4</td>
<td>352828,7</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>1996282,0</td>
<td>665427,3</td>
<td>1,704937 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>2341766,0</td>
<td>390294,4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>5043705,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cv = 16.66858% ns = Não significativo

QUADRO A3.20 Análise de variância (RCB) da produção total de MS. no 2º ano (1986/87).

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeticões</td>
<td>2</td>
<td>5362043,0</td>
<td>2681021,0</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>13390455,0</td>
<td>4463485,0</td>
<td>12,11904 **</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>2209820,0</td>
<td>368303,4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>20962318,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cv = 12.51060% ns = Não significativo
* ** *** = P < 0.05 0.01 0.001

QUADRO A3.21 Análise de variância combinada (RCB) da produção total de MS. nos anos de ensaio.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anos</td>
<td>1</td>
<td>7298882,0</td>
<td>729882,0</td>
<td>4,811630 *</td>
</tr>
<tr>
<td>Rep. dentro anos</td>
<td>4</td>
<td>6067700,0</td>
<td>1516925,0</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>12446781,0</td>
<td>4148927,0</td>
<td>10,93841 **</td>
</tr>
<tr>
<td>Anos x Tratamentos</td>
<td>3</td>
<td>2939955,0</td>
<td>979985,2</td>
<td>2,583675 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>12</td>
<td>4551587,0</td>
<td>379298,9</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>23</td>
<td>33304905,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 1,059709 ns = Não significativo
* ** = P < 0.05 0.01
QUADRO A3.22 Valores médicos da composição química do pasto, nos tratamentos, em várias fases de crescimento (referenciadas à data de germinação), no 1º ano.

<table>
<thead>
<tr>
<th>PARÂMETRO</th>
<th>FASE</th>
<th>PASTAG.</th>
<th>SEMELHA</th>
<th>P.S.MOB.</th>
<th>MÍNIMA</th>
<th>P.NAT. FERTIL.</th>
<th>PASTAG.</th>
<th>NATURAL</th>
<th>DIFERENÇAS</th>
<th>LSD</th>
<th>ENTRE TRAT. (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(dias)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z MS</td>
<td>72</td>
<td>15,91</td>
<td>15,67</td>
<td>15,55</td>
<td>13,14</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>16,12</td>
<td>18,72</td>
<td>17,12</td>
<td>19,77</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>15,47</td>
<td>16,63</td>
<td>18,11</td>
<td>18,60</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>16,58</td>
<td>22,17</td>
<td>23,67</td>
<td>24,37</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201</td>
<td>42,51</td>
<td>50,21</td>
<td>49,94</td>
<td>47,90</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diferenças entre fases de crescimento *** LSD0.05 = 6,37</td>
<td></td>
</tr>
<tr>
<td>MO (Z MS)</td>
<td>72</td>
<td>77,98</td>
<td>84,74</td>
<td>88,47</td>
<td>89,50</td>
<td>a</td>
<td>5,37</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>87,26</td>
<td>85,76</td>
<td>86,59</td>
<td>86,89</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>87,72</td>
<td>88,29</td>
<td>88,31</td>
<td>89,16</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>90,77</td>
<td>91,46</td>
<td>92,34</td>
<td>92,82</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201</td>
<td>93,36</td>
<td>93,02</td>
<td>94,06</td>
<td>94,35</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fases de crescimento x tratamentos ** LSD0.05 = 2,53</td>
<td></td>
</tr>
<tr>
<td>FB (Z MS)</td>
<td>72</td>
<td>18,86</td>
<td>19,89</td>
<td>23,39</td>
<td>20,43</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>20,66</td>
<td>19,47</td>
<td>18,30</td>
<td>16,98</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>23,18</td>
<td>21,68 ab</td>
<td>17,99 bc</td>
<td>15,48 c</td>
<td>a</td>
<td>4,24</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>16,52</td>
<td>13,66</td>
<td>12,56</td>
<td>10,84</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201</td>
<td>7,83</td>
<td>7,77</td>
<td>6,56</td>
<td>6,84</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diferenças entre fases de crescimento ** LSD0.05 = 5,20</td>
<td></td>
</tr>
<tr>
<td>ADP (Z MS)</td>
<td>72</td>
<td>25,46 a</td>
<td>18,94</td>
<td>20,50 b</td>
<td>24,82 a</td>
<td>** 2,24</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>20,02</td>
<td>23,15</td>
<td>25,23</td>
<td>24,81</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>23,54</td>
<td>23,49</td>
<td>27,32</td>
<td>28,67</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>25,48</td>
<td>26,59</td>
<td>29,36</td>
<td>30,53</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201</td>
<td>39,21</td>
<td>39,47</td>
<td>40,23</td>
<td>39,86</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fases de crescimento x tratamentos ** LSD0.05 = 3,08</td>
<td></td>
</tr>
<tr>
<td>CINZAS</td>
<td>72</td>
<td>22,02 a</td>
<td>15,99 b</td>
<td>11,59 b</td>
<td>11,50 b</td>
<td>a</td>
<td>5,02</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z MS)</td>
<td>106</td>
<td>13,05</td>
<td>14,07</td>
<td>13,41</td>
<td>13,11</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>12,28</td>
<td>11,71</td>
<td>11,49</td>
<td>11,05</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>9,24</td>
<td>8,54</td>
<td>7,66</td>
<td>7,18</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201</td>
<td>6,64</td>
<td>6,98</td>
<td>5,94</td>
<td>5,65</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fases de crescimento x tratamentos ** LSD0.05 = 1,85</td>
<td></td>
</tr>
<tr>
<td>DIGESTÍVEL</td>
<td>72</td>
<td>69,97</td>
<td>72,73</td>
<td>71,87</td>
<td>68,27</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"In vitro"</td>
<td>106</td>
<td>75,70</td>
<td>69,80</td>
<td>63,50</td>
<td>65,56</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>130</td>
<td>76,60 a</td>
<td>73,80 ab</td>
<td>68,43 bc</td>
<td>64,97 c</td>
<td>a</td>
<td>6,90</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>72,73 a</td>
<td>72,13 ab</td>
<td>66,50 bc</td>
<td>63,77 c</td>
<td>a</td>
<td>5,46</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>51,73</td>
<td>49,43</td>
<td>46,67</td>
<td>47,17</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diferenças entre fases de crescimento ** LSD0.05 = 9,11

(1) diferenças calculadas para os níveis de significância indicados
<table>
<thead>
<tr>
<th>CAUSAS</th>
<th>VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>29,56182</td>
<td>14,78091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>15,04343</td>
<td>5,014475</td>
<td>0,8129768</td>
<td>ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>37,00825</td>
<td>6,168042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>81,61349</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>53,51055</td>
<td>26,75528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>23,86676</td>
<td>7,955586</td>
<td>2,036021</td>
<td>ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>23,44452</td>
<td>3,907419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>100,8218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>125,2999</td>
<td>62,64993</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>18,30789</td>
<td>6,102631</td>
<td>2,350528</td>
<td></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>15,57768</td>
<td>2,596281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>159,1854</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>60,44932</td>
<td>30,22466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>109,9699</td>
<td>35,32329</td>
<td>4,240450</td>
<td>ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>49,98048</td>
<td>8,330081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>216,3997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>216,5582</td>
<td>108,2791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>114,8842</td>
<td>38,2974</td>
<td>1,32300</td>
<td>ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>173,6723</td>
<td>28,94538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>505,1146</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo
QUADRO A3.24 Análise de variância combinada (RCB) do teor em MS (%), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases Crescimento</td>
<td>4</td>
<td>8729,469</td>
<td>2182,367</td>
<td>44,96207***</td>
</tr>
<tr>
<td>Rep. dentro fases cresc.</td>
<td>10</td>
<td>485,3797</td>
<td>48,53797</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>131,1650</td>
<td>43,72166</td>
<td>4,3767788*</td>
</tr>
<tr>
<td>Fases cresc. x Tratamentos</td>
<td>12</td>
<td>146,9072</td>
<td>12,24227</td>
<td>1,225521 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>30</td>
<td>299,6832</td>
<td>9,989439</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>9792,604</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 3,474801 ns = Não significativo

* ** *** = P < 0.05 0.01 0.001
<table>
<thead>
<tr>
<th>Causas Variação</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>7,719467</td>
<td>3,859733</td>
<td>*</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>184,1943</td>
<td>61,3981</td>
<td>8,504913*</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>43,3148</td>
<td>7,219133</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>235,2286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>57,96002</td>
<td>28,98001</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>3,733633</td>
<td>1,244544</td>
<td>0,8128684ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>9,186317</td>
<td>1,531053</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>70,87997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>8,038350</td>
<td>4,019175</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>3,216667</td>
<td>1,072222</td>
<td>1,752291ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>3,671383</td>
<td>0,6118972</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>14,9264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>6,008817</td>
<td>3,004408</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>7,522167</td>
<td>2,507389</td>
<td>3,163776ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>4,755183</td>
<td>0,795306</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>18,28617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>0,6381500</td>
<td>0,3190750</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>3,404292</td>
<td>1,134764</td>
<td>0,8145619ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>8,358583</td>
<td>1,393097</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>12,40103</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo

* = P < 0.05
QUADRO A3.26 Análise de variância combinada (RCB) do teor em MM (% MS.), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases Crescimento</td>
<td>4</td>
<td>691.6646</td>
<td>172.9161</td>
<td>21.51640 ***</td>
</tr>
<tr>
<td>Rep.dentro fases cresc.</td>
<td>10</td>
<td>80.3648</td>
<td>8.03648</td>
<td>**</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>66.17112</td>
<td>22.05704</td>
<td>9.550396 **</td>
</tr>
<tr>
<td>Fases Cresc. x Tratamentos</td>
<td>12</td>
<td>135.8999</td>
<td>11.32499</td>
<td>4.903567 **</td>
</tr>
<tr>
<td>Erro</td>
<td>30</td>
<td>69.28627</td>
<td>2.309542</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>1043.387</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[F = 1.757784 \]

ns = Não significativo
* ** *** = P \(<\ 0.05\ 0.01\ 0.001\)
QUADRO A3.27 Análises de variância (RCB) do teor em PB (% MS.) do pasto, em várias fases de crescimento (referenciadas à data de germinação), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>72 dias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>30,40572</td>
<td>15,20286</td>
<td></td>
</tr>
<tr>
<td>Tratamento</td>
<td>3</td>
<td>34,0167</td>
<td>11,3389</td>
<td>0,8673111</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>78,44175</td>
<td>13,07363</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>142,8642</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>102 dias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>158,5326</td>
<td>79,26631</td>
<td></td>
</tr>
<tr>
<td>Tratamento</td>
<td>3</td>
<td>22,42816</td>
<td>7,476053</td>
<td>0,8912987</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>50,32692</td>
<td>8,387819</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>231,2877</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>130 dias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>43,05665</td>
<td>21,52833</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>110,0823</td>
<td>36,6941</td>
<td>8,136600</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>27,05855</td>
<td>4,509758</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>180,1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>165 dias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>93,96332</td>
<td>46,98166</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>52,19849</td>
<td>17,39950</td>
<td>3,451929</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>30,24308</td>
<td>5,040514</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>176,4049</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>201 dias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>1,25295</td>
<td>0,626475</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>3,761225</td>
<td>1,253742</td>
<td>0,2212066</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>34,00645</td>
<td>5,667742</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>39,02063</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo
* = P < 0.05
QUADRO A3.28. Análise de variância combinada (RCB) do teor em P8 (% MS.), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>CL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases Crescimento</td>
<td>4</td>
<td>1512,803</td>
<td>378,2007</td>
<td>11,55830**</td>
</tr>
<tr>
<td>Rep.dentro fases cresc.</td>
<td>10</td>
<td>327,2113</td>
<td>32,72113</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>87,83533</td>
<td>29,27844</td>
<td>3,991122 *</td>
</tr>
<tr>
<td>Fases cresc. x Tratamentos</td>
<td>12</td>
<td>134,6516</td>
<td>11,22096</td>
<td>1,529598ns</td>
</tr>
<tr>
<td>Erro</td>
<td>30</td>
<td>220,0768</td>
<td>7,335892</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 58 2282,577

F = 1,124437

ns = Não significativo

* ** = P < 0.05 0.01
QUADRO A3.29
Análises de variância (RCB) do teor em ADF (% MS.) do pasto, em várias fases de crescimento (referenciadas à data de germi-
nação), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>14,28172</td>
<td>7,140858</td>
<td>***</td>
</tr>
<tr>
<td>Tratamento</td>
<td>3</td>
<td>92,44549</td>
<td>30,81516</td>
<td>56,35059</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>3,281083</td>
<td>0,5468472</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>110,0083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>82,6178</td>
<td>41,3089</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamento</td>
<td>3</td>
<td>50,22036</td>
<td>16,74012</td>
<td>3,569313</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>28,14007</td>
<td>4,690011</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>160,9782</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>0,3803167</td>
<td>0,1901583</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>69,35349</td>
<td>23,11783</td>
<td>3,876220</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>35,78408</td>
<td>5,964014</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>105,5179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>22,86272</td>
<td>11,43136</td>
<td>ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>49,87209</td>
<td>16,62403</td>
<td>3,076541</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>32,42088</td>
<td>5,403481</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>105,1557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>1,00415</td>
<td>0,5020750</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>1,795758</td>
<td>0,5985861</td>
<td>1,265101</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>2,838917</td>
<td>0,4731528</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>5,638825</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo

*** = \(p \leq 0,001 \)

- 130 -
QUADRO A3.30 Análise de variância combinada (RCB) do teor ADF (% MS.), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases de cresc.</td>
<td>4</td>
<td>2329,382</td>
<td>582,3454</td>
<td>48,06944 ***</td>
</tr>
<tr>
<td>Rep.dentro F.Cresc.</td>
<td>10</td>
<td>121,1467</td>
<td>12,11467</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>116,0788</td>
<td>38,69295</td>
<td>11,32863 **</td>
</tr>
<tr>
<td>Fases cresc. x trat.</td>
<td>12</td>
<td>147,6083</td>
<td>12,30070</td>
<td>3,601432 *</td>
</tr>
<tr>
<td>Erro</td>
<td>30</td>
<td>102,4650</td>
<td>3,415501</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>2816,681</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 11,42016

ns = Não significativo

* ** *** = P < 0,05 0,01 0,001
QUADRO A3.31 Análises de variância (RCB) do teor em Cinzas (% MS.) do pasto, em várias fases de crescimento (referenciadas à data de germi-nação), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS</th>
<th>VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td></td>
<td>2</td>
<td>3,500817</td>
<td>1,750408</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td>3</td>
<td>184,4103</td>
<td>61,47010</td>
<td>9,727053</td>
</tr>
<tr>
<td>Erro</td>
<td></td>
<td>6</td>
<td>37,91698</td>
<td>6,19497</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>11</td>
<td>225,8281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td></td>
<td>2</td>
<td>65,60585</td>
<td>32,80293</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td>3</td>
<td>1,964467</td>
<td>0,6548222</td>
<td>0,6681310 ns</td>
</tr>
<tr>
<td>Erro</td>
<td></td>
<td>6</td>
<td>5,880483</td>
<td>0,980086</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>11</td>
<td>73,4508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td></td>
<td>2</td>
<td>8,684017</td>
<td>4,342008</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td>3</td>
<td>2,355958</td>
<td>0,7853194</td>
<td>0,9750037 ns</td>
</tr>
<tr>
<td>Erro</td>
<td></td>
<td>6</td>
<td>4,832717</td>
<td>0,8054528</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>11</td>
<td>15,87269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td></td>
<td>2</td>
<td>6,00945</td>
<td>3,004725</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td>3</td>
<td>7,543825</td>
<td>2,514608</td>
<td>3,174109 ns</td>
</tr>
<tr>
<td>Erro</td>
<td></td>
<td>6</td>
<td>4,75335</td>
<td>0,792225</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>11</td>
<td>18,30663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td></td>
<td>2</td>
<td>0,63815</td>
<td>0,319075</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td></td>
<td>3</td>
<td>3,404292</td>
<td>1,134764</td>
<td>0,8145619 ns</td>
</tr>
<tr>
<td>Erro</td>
<td></td>
<td>6</td>
<td>8,358583</td>
<td>1,393097</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>11</td>
<td>12,40103</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo

* ** *** = p < 0,05 0,01 0,001
QUADRO A3.32 Análise de variância combinada (RCB) do teor em cinzas (% MS.), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases de Crescimento</td>
<td>4</td>
<td>741,4991</td>
<td>178,6248</td>
<td>21,15448 ***</td>
</tr>
<tr>
<td>Rep. dentro fases cresc.</td>
<td>10</td>
<td>84,43828</td>
<td>8,443828</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>69,57673</td>
<td>23,19224</td>
<td>11,26893 **</td>
</tr>
<tr>
<td>Fases cres. x tratamentos</td>
<td>12</td>
<td>130,1021</td>
<td>10,84184</td>
<td>5,267964 **</td>
</tr>
<tr>
<td>Erro</td>
<td>30</td>
<td>61,74212</td>
<td>2,058071</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>1060,358</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 1,758462

ns = Não significativo

* ** *** = P < 0.05 0.01 0.001
QUADRO A3.33 Análises de variância (RCB) da Digestibilidade "in vitro" da MS. (%) do pasto, em várias fases de crescimento (referenciadas à data de germinação), no 19 ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>333,3517</td>
<td>166,6758</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>35,8625</td>
<td>11,95417</td>
<td>0,6456186 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>111,095</td>
<td>18,51583</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>480,3092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>505,865</td>
<td>252,9325</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>262,8092</td>
<td>87,60306</td>
<td>2,633248 ps</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>199,6083</td>
<td>33,26806</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>968,2825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>97,755</td>
<td>48,8775</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>246,5367</td>
<td>82,17889</td>
<td>6,892435</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>71,53833</td>
<td>11,92306</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>415,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>44,52167</td>
<td>22,265083</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>166,4967</td>
<td>55,49889</td>
<td>7,419913 *</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>44,87833</td>
<td>7,479722</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>255,8967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>20,42</td>
<td>10,21</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>48,64333</td>
<td>16,21444</td>
<td>0,9507460 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>102,3267</td>
<td>17,05444</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>171,39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = P < 0,05
ns = Não significativo
QUADRO A3.34 Análise de variância combinada (RCB) da Digestibilidade da MS. (%), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases Crescimento</td>
<td>4</td>
<td>4302,835</td>
<td>1075,709</td>
<td>10,73654 **</td>
</tr>
<tr>
<td>Rep. dentro fases crec.</td>
<td>10</td>
<td>1001,913</td>
<td>100,1913</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>538,5527</td>
<td>179,5176</td>
<td>10,17199 ***</td>
</tr>
<tr>
<td>Fases Cres. x Tratamentos</td>
<td>12</td>
<td>221,7957</td>
<td>18,48297</td>
<td>1,047299 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>30</td>
<td>529,4467</td>
<td>17,64822</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 2.280091 ns = Não significativo
* ** *** = P < 0.05 0.01 0.001

QUADRO A3.35 Valores médios de composição química do pasto, nos tratamentos, em várias fases de crescimento (referenciadas à data de germinação), no 28.º ano.

<table>
<thead>
<tr>
<th>PARÂMETROS</th>
<th>FASE (dias)</th>
<th>PASTAG. SENERADA</th>
<th>P. S. M. MINIMA</th>
<th>P. NAT. FERTIL.</th>
<th>PASTAG. NATURAL</th>
<th>DIFERENÇAS ENTRE TRAT. (1)</th>
<th>LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MS</td>
<td>61</td>
<td>20,22</td>
<td>21,02</td>
<td>25,88</td>
<td>29,77</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>28,97</td>
<td>32,93</td>
<td>32,14</td>
<td>32,07</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>NO (% MS)</td>
<td>61</td>
<td>84,06</td>
<td>79,22</td>
<td>87,93</td>
<td>81,04</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>91,11</td>
<td>91,25</td>
<td>93,21</td>
<td>92,85</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>PB (% MS)</td>
<td>61</td>
<td>13,09</td>
<td>13,31</td>
<td>10,24</td>
<td>9,76</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>8,78</td>
<td>8,21</td>
<td>6,17</td>
<td>6,48</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>ADF (% MS)</td>
<td>61</td>
<td>31,55</td>
<td>29,67</td>
<td>35,54</td>
<td>37,54</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>37,87</td>
<td>39,14</td>
<td>40,79</td>
<td>42,19</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CINZAS</td>
<td>61</td>
<td>15,94</td>
<td>20,78</td>
<td>12,07</td>
<td>18,96</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(% MS)</td>
<td>211</td>
<td>8,89</td>
<td>8,75</td>
<td>6,79</td>
<td>7,15</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DIGESTIBIL. "in vitro"</td>
<td>61</td>
<td>59,40</td>
<td>56,80</td>
<td>54,77</td>
<td>51,10</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>56,63 a</td>
<td>54,37 ab</td>
<td>48,90 b</td>
<td>49,63 b</td>
<td>*</td>
<td>5,99</td>
</tr>
</tbody>
</table>

(1) diferenças calculadas para os níveis de significância indicados
QUADRO A3.36
Análises de variância dos valores de MS (% do pasto, em duas fases de crescimento, no 2º ano.

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61 dias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>19,6177</td>
<td>9,8088</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>182,8379</td>
<td>60,9460</td>
<td>2,24 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>163,2954</td>
<td>27,2159</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>365,7510</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>211 dias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>35,5918</td>
<td>17,7959</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>27,5430</td>
<td>9,1810</td>
<td>0,51 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>109,0654</td>
<td>18,1776</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>172,2002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo

QUADRO A3.37
Análises de variância dos valores de MG (% MS) do pasto, em duas fases de crescimento, no 2º ano.

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61 dias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>86,3125</td>
<td>43,1563</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>130,7578</td>
<td>43,5859</td>
<td>0,88 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>296,2110</td>
<td>49,3685</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>513,2813</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>211 dias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>4,5547</td>
<td>2,2773</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>10,4375</td>
<td>3,4792</td>
<td>1,66 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>12,5781</td>
<td>2,0964</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>27,5703</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo
QUADRO A3.38 Análises de variância dos valores de PB (% MS) do pasto, em duas fases de crescimento, no 2º ano.

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>13,1080</td>
<td>6,7274</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>31,1080</td>
<td>10,3693</td>
<td>2,04<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>30,4854</td>
<td>5,0809</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>75,0482</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

211 dias

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>0,6151</td>
<td>0,3075</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>14,7768</td>
<td>4,9256</td>
<td>3,72<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>9,9512</td>
<td>1,3252</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>23,3431</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{ns} = Não significativo

QUADRO A3.39 Análises de variância dos valores de ADF (% MS) do pasto, em duas fases de crescimento, no 2º ano.

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>120,2471</td>
<td>60,1233</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>116,7559</td>
<td>38,9186</td>
<td>2,59<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>90,1836</td>
<td>15,0306</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>327,1865</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

211 dias

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>0,0703</td>
<td>0,0352</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>32,1113</td>
<td>10,7038</td>
<td>3,27<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>19,6367</td>
<td>3,2728</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>51,8184</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{ns} = Não significativo
QUADRO A3.40 Análises de variância dos valores de cinzas (% MS) do pasto, em duas fases de crescimento, no 2º ano.

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>86,3115</td>
<td>43,1558</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>130,7625</td>
<td>43,5875</td>
<td>0.88<sup>NS</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>296,2075</td>
<td>49,3679</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>513,2815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>4,5674</td>
<td>2,2837</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>10,4493</td>
<td>3,4831</td>
<td>1.66<sup>NS</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>12,5538</td>
<td>2,0923</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>27,5704</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{ns = Não significativo}

QUADRO A3.41 Análises de variância dos valores de digestibilidade "in vitro" do MS (%) em duas fases de crescimento, no 2º ano.

<table>
<thead>
<tr>
<th>CAUSAS DE VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>298,1641</td>
<td>149,0802</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>51,1406</td>
<td>17,0469</td>
<td>0.60<sup>NS</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>169,8594</td>
<td>28,3099</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>519,1641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>9,9023</td>
<td>4,9512</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>125,0781</td>
<td>41,6927</td>
<td>4.79<sup>*</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>52,2188</td>
<td>8,7031</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>187,1992</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[*] P < 0.05

^{ns = Não significativo}
QUADRO A3.42 Valores médios da produção diária de Proteína Bruta (Kg/ha-1) em vários períodos de crescimento do pasto, no I° ano.

| Dias após germinação (d) | P. Samp. (A) | P.S.职位. mínima (B) | P. Nat. adubada (C) | P. Natural (D) | Diferenças entre tratamentos | L.S.D. | C.V. (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 72</td>
<td>1,16</td>
<td>1,10</td>
<td>2,53</td>
<td>1,37</td>
<td>ns</td>
<td>24,78</td>
<td></td>
</tr>
<tr>
<td>72 - 106</td>
<td>0,71</td>
<td>0,27</td>
<td>1,16</td>
<td>1,12</td>
<td>ns</td>
<td>55,86</td>
<td></td>
</tr>
<tr>
<td>106 - 139</td>
<td>6,08</td>
<td>5,28</td>
<td>2,82</td>
<td>2,31</td>
<td>a</td>
<td>2,30</td>
<td>3,48</td>
</tr>
<tr>
<td>130 - 165</td>
<td>11,41</td>
<td>11,61</td>
<td>10,72</td>
<td>7,60</td>
<td>ns</td>
<td>40,81</td>
<td></td>
</tr>
<tr>
<td>165 - 201</td>
<td>3,50</td>
<td>3,13</td>
<td>2,70</td>
<td>1,29</td>
<td>ns</td>
<td>52,85</td>
<td></td>
</tr>
</tbody>
</table>

Diferenças entre períodos crescimento

L.S.D.:

<table>
<thead>
<tr>
<th></th>
<th>0,05</th>
<th>0,01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,78</td>
<td>6,68</td>
</tr>
</tbody>
</table>

Nota: Para os valores médios, as líneas de crescimento referenciadas com a mesma letra, não apresentam diferenças significativas (P < 0,05)

(a) germinação 10/11/83

ns = Não significativo

** = Significativo a P < 0,01
<table>
<thead>
<tr>
<th>CAUSAS</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>0.1220512</td>
<td>0.0610256</td>
<td>n.s</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>0.3525464</td>
<td>0.1173155</td>
<td>1.155026 n.s</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>0.61045630</td>
<td>0.1017427</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>1.085054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 - 106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>1.354987</td>
<td>0.6774936</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>1.520157</td>
<td>0.5067191</td>
<td>2.467677 n.s</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>1.232055</td>
<td>0.2053425</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>4.107200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 - 130 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>5.201305</td>
<td>2.600657</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>30.40680</td>
<td>10.13560</td>
<td>7.663424</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>7.935565</td>
<td>1.322594</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>43.54367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 - 165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>213.4372</td>
<td>106.7186</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>31.24996</td>
<td>10.41665</td>
<td>0.5827530 n.s</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>107.2494</td>
<td>17.87490</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>351.9366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 - 201 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>0.9231104</td>
<td>0.4115552</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>8.553591</td>
<td>2.851197</td>
<td>1.394443 n.s</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>12.26811</td>
<td>2.044685</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>21.64481</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n.s = Não significativo

* ** *** = P < 0.05 0.01 0.001

- 140 -
QUADRO A3.44 Análise de variância combinada (RCB) da produção diária de Proteína Bruta (Kg. ha⁻¹), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fases de Crescimento</td>
<td>4</td>
<td>710,9087</td>
<td>177,7272</td>
<td>8,044187**</td>
</tr>
<tr>
<td>Rep. dentro fases cresc.</td>
<td>10</td>
<td>220,9387</td>
<td>22,09387</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>29,20434</td>
<td>9,734780</td>
<td>2,258726ns</td>
</tr>
<tr>
<td>Fases cres. x Tratamentos</td>
<td>12</td>
<td>42,87871</td>
<td>3,573226</td>
<td></td>
</tr>
<tr>
<td>Erro</td>
<td>30</td>
<td>129,2956</td>
<td>4,309854</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>1133,226</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 8,742129

* ns = Não significativo

** *** = p 0,05 0,01 0,001

QUADRO A3.45 Produção total de Proteína bruta (Kg. ha⁻¹).

<table>
<thead>
<tr>
<th>ANOS</th>
<th>P. Semeada (A)</th>
<th>P. D. Semeada Mínima (B)</th>
<th>P. Nat. Adubado (C)</th>
<th>P. Nat. Natural (D)</th>
<th>Diferenças entre tratamentos</th>
<th>L.S.D. 0,05</th>
<th>L.S.D. 0,01</th>
<th>C.V. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>778,7</td>
<td>734,0</td>
<td>696,7</td>
<td>503,5</td>
<td>ns</td>
<td></td>
<td></td>
<td>30,26</td>
</tr>
<tr>
<td>2</td>
<td>816,3a</td>
<td>783,0ab</td>
<td>689,4b</td>
<td>417,9c</td>
<td>***</td>
<td>135,2</td>
<td>204,8</td>
<td>9,6%</td>
</tr>
</tbody>
</table>

ns = Não significativo

*** = p < 0,001

Nota: Os resultados referenciados com a mesma letra, não têm diferenças significativas (p < 0,05)

QUADRO A3.46 Análise de variância (RCB) da produção total de Proteína Bruta (Kg. ha⁻¹), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>334403,5</td>
<td>167201,8</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>131812,3</td>
<td>43937,44</td>
<td>1,041547ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>253108,8</td>
<td>42184,79</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>719324,6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cv = 30,27874% ns = Não significativo
QUADRO A3.47 Análise de variância (RCB) da produção total de Proteína Bruta (Kg. ha\(^{-1}\)) no 2º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetções</td>
<td>2</td>
<td>65707,61</td>
<td>32853,80</td>
<td>***</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>400359,4</td>
<td>133453,1</td>
<td>29,15446</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>27464,71</td>
<td>4577,452</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>493531,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cv = 9,642075% ns = Não significativo
* ** *** = P < 0,05 0,01 0,001

QUADRO A3.48 Valores médios da produção diária de Matéria Seca Digestível (Kg. ha\(^{-1}\)) em vários períodos de crescimento do pasto, no 1º ano.

<table>
<thead>
<tr>
<th>Dias após</th>
<th>P. Sensada</th>
<th>P. M.N. Minima</th>
<th>P. Pat. adubada</th>
<th>P. Natural</th>
<th>Diferenças entre tratamentos</th>
<th>L.S.D.</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>germinação 10/11/85</td>
<td>0 - 72 ab</td>
<td>4,22</td>
<td>3,97</td>
<td>4,72</td>
<td>4,72</td>
<td>4,32</td>
<td>34,9</td>
</tr>
<tr>
<td>72 - 106 b</td>
<td>2,45</td>
<td>2,95</td>
<td>3,87</td>
<td>4,18</td>
<td>4,18</td>
<td>43,68</td>
<td>42,48</td>
</tr>
<tr>
<td>106 - 130 a</td>
<td>20,07 ab</td>
<td>17,90 abc</td>
<td>10,51</td>
<td>9,90 abc</td>
<td>*</td>
<td>7,99</td>
<td>12,12</td>
</tr>
<tr>
<td>130 - 165 c</td>
<td>49,19</td>
<td>57,83</td>
<td>50,44</td>
<td>47,68</td>
<td>ns</td>
<td>29,77</td>
<td>27,92</td>
</tr>
<tr>
<td>165 - 201 d</td>
<td>22,67</td>
<td>19,22</td>
<td>20,47</td>
<td>8,56</td>
<td>ns</td>
<td>28,76</td>
<td></td>
</tr>
</tbody>
</table>

Diferenças entre períodos crescimento
L.S.D. 0,05 11,29 0,01 16,06

(1) germinação 10/11/85 ns = Não significativo
* ** = significativo a P 0,05 0,01

- 142 -
QUADRO A3.49 Análises de variância (RCB) da produção diária de MS Digestível (Kg. ha\(^{-1}\)), em vários períodos de crescimento do pasto (referenciadas à data de germinação), no 1º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 72 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>0,7834233</td>
<td>0,3917116</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>0,9747404</td>
<td>0,3249135</td>
<td>1,098744 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>1,774282</td>
<td>0,2957136</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>3,532446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 – 106 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>10,85143</td>
<td>5,425716</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>19,69094</td>
<td>6,563648</td>
<td>4,193052 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>9,392177</td>
<td>1,565363</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>39,93455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 – 130 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>33,88781</td>
<td>16,94391</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>238,8596</td>
<td>79,61986</td>
<td>4,969692 *</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>96,12651</td>
<td>16,02108</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>368,8739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 – 165 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>1475,607</td>
<td>737,8033</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>196,6228</td>
<td>65,54095</td>
<td>0,2829325 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>1389,892</td>
<td>231,6487</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>3062,121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 – 201 dias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetições</td>
<td>2</td>
<td>20,44281</td>
<td>10,22140</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>333,4281</td>
<td>111,1427</td>
<td>4,216773 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>158,1437</td>
<td>26,35729</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>512,0146</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns = Não significativo

* = p < 0,05

- 143 -
QUADRO A3.50 Análise de variância combinada (RCB) da produção diária de MS Digestível (Kg. ha\(^{-1}\)), no 1\º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SP</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Períodos Crescimento</td>
<td>4</td>
<td>18293,85</td>
<td>4573,462</td>
<td>29,56752 **</td>
</tr>
<tr>
<td>Rep. dentro períodos cresc.</td>
<td>10</td>
<td>1541,572</td>
<td>154,1372</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>243,3998</td>
<td>81,9922</td>
<td>1,471610 ns</td>
</tr>
<tr>
<td>Período cresc. x tratamentos</td>
<td>12</td>
<td>545,9764</td>
<td>43,49803</td>
<td>0,8245740</td>
</tr>
<tr>
<td>Erro</td>
<td>30</td>
<td>1655,329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>22260,32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 8.788790 ns = Não significativo

* ** *** = P < 0.05 0.01 0.001

QUADRO A3.51 Produção total de Matéria Seca Digestível (Kg. ha\(^{-1}\)).

<table>
<thead>
<tr>
<th>ANOS</th>
<th>P. Semente (A)</th>
<th>P. Semente, Mínima (B)</th>
<th>P. Nat. adubada (C)</th>
<th>P. Nat. (D)</th>
<th>Diferenças entre tratamentos</th>
<th>L.S.D. 0,05</th>
<th>C.V. 0,01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 406,8</td>
<td>3 463,4</td>
<td>3 225,8</td>
<td>2 675,3</td>
<td>ns</td>
<td>20,72</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4 030,2(^a)</td>
<td>3 464,9(^b)</td>
<td>3 071,9(^b)</td>
<td>2 014,5(^c)</td>
<td>***</td>
<td>335,1</td>
<td>810,6</td>
</tr>
</tbody>
</table>

ns = Não significativo

*** = P < 0.001

Nota: Os resultados referenciados com a mesma letra não têm diferenças significativas (P < 0,05)

QUADRO A3.52 Análise de variância (RCB) da produção de Matéria Seca Digestível (Kg. ha\(^{-1}\)), no 2\º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SP</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>2126785,0</td>
<td>1063939,0</td>
<td>0,8883375 ns</td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>1167103,0</td>
<td>389034,4</td>
<td></td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>2627612,0</td>
<td>437935,4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>5921501,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cv = 20,72352% ns = Não significativo

QUADRO A3.53 Análise de variância (RCB) da produção de Matéria Seca Digestível (Kg. ha\(^{-1}\)), no 2\º ano.

<table>
<thead>
<tr>
<th>CAUSAS VARIAÇÃO</th>
<th>GL</th>
<th>SP</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetições</td>
<td>2</td>
<td>1765203,0</td>
<td>882601,4</td>
<td></td>
</tr>
<tr>
<td>Tratamentos</td>
<td>3</td>
<td>6508003,0</td>
<td>2169334,0</td>
<td>30,24626 ***</td>
</tr>
<tr>
<td>Erro</td>
<td>6</td>
<td>430334,4</td>
<td>71722,40</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>870354,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cv = 8,514435% ns = Não significativo

* ** *** = P < 0,05 0.01 0.001