FLORESTA VIVA
PATRIMÓNIO DE FUTURO
Enquadramento

As fontes de energia renováveis caracterizam-se, em termos gerais, pela sua disponibilidade descentralizada, por apresentarem uma capacidade de se auto-regenerarem em curtos períodos de tempo e pelos reduzidos impactes ambientais decorrentes da sua utilização. A procura pelos recursos energéticos endógenos poderá dar um importante contributo para a redução do consumo de energia fósil, com reflexos directos sobre os preocupantes impactes ambientais a si associados, permitindo assim, a melhoria da qualidade do ar, da saúde das populações, bem como, a redução/controlo da importância e crescente poluição industrial e urbana, com respectivas implicações para o aquecimento global.

As principais fontes de energia renováveis actualmente disponíveis em formas tecnológicas desenvolvidas, podem ser agrupadas da seguinte forma: energia eólica, energia hídrica, energia das ondas e das marés, energia solar (activa: térmica e fotovoltaica; e passiva), energia geotérmica e energia da biomassa (resíduos florestais, resíduos agrícolas, culturas energéticas, resíduos de origem animal, resíduos das indústrias agro-alimentares e resíduos urbanos).

A promoção das energias renováveis permite, para além da redução da dependência energética, criar uma diversificação na origem, isto é, a energia passa a ser proveniente de diferentes fontes (eólica, hídrica, solar, geotérmica, biomassa – redução da dependência do recurso), mas também a diversificação geográfica da energia primária, ou seja poder ser produzida numa geografia mais alargada (redução da dependência estratégica). Neste último ponto é usual ouvir falar de produção de energia descentralizada, quer isto dizer que a sua produção é realizada de acordo com a distribuição do recurso, gerando por isso, um desenvolvimento alargado a todo o território, e não apenas às regiões mais industrializadas. Este facto pode assim, tornar esta energia determinante na promoção da economia e na criação de emprego em regiões rurais.

A par com a redução das emissões de gases com efeito de estufa (GEE), factor de inséquia importância no cumprimento do protocolo de Quioto, surge também a possibilitade de se transformar resíduos em matéria-prima para produção de energia. Neste papel de reciclagem destaca-se, alguns exemplos, tais como, (1) a transformação de resíduos florestais, com um papel relevante na intensidade dos incêndios florestais, em biomassa para produção de energia, (2) os efluentes das suiniculturas, fonte da poluição de inúmeros cursos de água, utilizados
na produção de biogás, ou (3) os óleos resultantes de processos de fritura, com dificuldade de tratamento, que poderão ser transformados em biodiesel. No actual cenário do sector energético europeu impéra, ainda, a larga utilização de fontes não renováveis de energia e o seu elevado consumo, sendo evidente a forte dependência face aos países produtores de petróleo, como se pode observar na figura seguinte.

Figura 1 - Dependência energética nos países da União Europeia em 2004.

Fonte: Melheiro, 2006.

Portugal importa cerca de 85% da energia que consome, percentagem claramente superior à média da União Europeia, a que corresponde uma factura anual superior a 2 mil milhões de euros. O petróleo domina as importações, com uma quota de 71,1%, seguido pelo carvão (15,1%) e pelo gás natural, que desde que foi introduzido em 1997 tem apresentado um crescimento regular e já se situa actualmente em cerca de 13,1%.

A figura 2 mostra a percentagem das importações energéticas portuguesas verificadas em 2004.

Figura 2 - Importações energéticas de Portugal.

Mesmo não tendo em consideração a componente econômica, uma crise nos mercados internacionais de petróleo originaria um problema de abastecimento dificilmente resolúvel, se não for rapidamente alterado o paradigma energético nacional. Para minimizar esta dependência, garantir a segurança do abastecimento nacional e diversificar as fontes energéticas, o programa E4, lançado em 2001, e a Resolução do Governo 83/2003, de 28 de Abril, que aprova a Política Energética Nacional, assinaram diversas medidas das quais importa salientar o aumento dos aproveitamentos hidroeléctricos e a aposta nas energias renováveis, por constituírem recursos endógenos e um potencial renovável significativo ainda por explorar (DGGE, 2006).

Além disso, a Directiva Europeia 2001/77/CE relativa à produção de electricidade a partir de fontes renováveis estipula para Portugal que, em 2010, 9% da electricidade consumida seja de origem renovável. Acresce que as actuals previsões apontam que Portugal seja dos países da U.E. pior posicionados para cumprir os compromissos internacionais assumidos, nomeadamente os que resultam do Protocolo de Quioto.

De facto, Portugal já ultrapassou as emissões de gases de efeito de estufa (GEE) admissíveis para 2008-2010, até 1998, as emissões de GEE já tinham subido 24,5%, e, em 2003, as emissões cifravam-se em cerca de 40,2% dos valores correspondentes a 1990, quando o limite permitido era 27% até 2010, como se pode constatar pela observação da figura 3.

Figura 3 - Percentagem de redução/incremento de emissões de GEE para o período 2008/2012 em relação ao ano de 1997.

Fonte: Torné, 2005.
Para que os países participantes no Protocolo de Quioto atinjam os seus objectivos relativos às emissões de GEE, o próprio Protocolo contempla mecanismos de mercado possíveis de serem operationalizados: o Mecanismo de Implementação Conjunta (Joint Implementation - JI), Mecanismo de Desenvolvimento Limpo (Clean Development Mechanism - CDM) e o Comércio de Direitos de Emissão (Emission Trading - ET).

A União Europeia, de forma a garantir o cumprimento eficaz dos objectivos com que se vinculou no âmbito do Protocolo de Quioto em relação à emissão de GEE, e considerando os mecanismos que o Protocolo apresenta, aprovou a Diretiva 2003/87/CE que cria o Mecanismo de Comércio Europeu de Direitos de Emissão (CELE).

Os países participantes estabeleceram um teto de emissões de GEE para um conjunto de empresas (dependendo da actividade que desempenham), tendo-lhes sido atribuído um determinado valor de Licenças de Emissão que as empresas não poderão ultrapassar. Caso o nível de emissões das empresas ultrapasse o estabelecido, terão que comprar licenças adicionais no mercado. Assim, os produtores de energia eléctrica a partir de combustíveis fósseis, ao internalizarem os custos da redução das emissões no preço da energia eléctrica, elevam o preço da energia proveniente desta fonte convencional. Tal incentivará o desenvolvimento das Energias Renováveis, acrescentando competitividade a esta fonte energética (associada está, também, à escuta do custo das tecnologias de produção).

De acordo com cenários elaborados pela União Europeia, 1% de investimento anual complementar aplicado no sector das energias renováveis, permitiria reduzir as emissões de CO2 em 0,5-0,7% e reduzir as importações de não renováveis em 0,6% ao ano. Portugal terá assim de investir 6,4 mil milhões de euros até 2010 - o equivalente a mais de 4% do PIB - em recursos para produção de electricidade a partir de energias renováveis, se quiser cumprir as metas previstas (Tomé, 2005).

Para contrariar o actual panorama energético nacional, os objectivos institucionais portugueses baseiam-se em dois pilares fundamentais: o aumento da produção de energia a partir de fontes renováveis e o incremento da eficiência energética.

A Estratégia Portuguesa para as Energias Renováveis, de Janeiro de 2006, prevê entre outras o lançamento de centrais de biomassa (250MW) e incentivos fiscais para a produção de biocombustíveis.

Biomassa florestal em Portugal

Em Portugal, a principal fonte de biomassa é, sem dúvida, a floresta, que representa um terço da área total do país, constituindo desta forma um importante recurso que deverá ser avaliado no sentido de se obter um aprovendo aproveitamento dos resíduos ali produzidos. De acordo com o Inventário Florestal Nacional (IFN, 2006), a área ocupada por povosamentos florestais em Portugal continental corresponde a cerca de 3130,6 mil hectares, ocupando as principais espécies do nosso património florestal as seguintes áreas: pinheiro bravo (710,6 mil ha), abeto (736,7 mil ha), eucalipto (646,7 mil ha) e azinheira (383,3 mil ha). O uso de biomassa florestal como fonte energética apresenta-se no só como um importante meio para cumprir as metas definidas em Quioto, como também para o ordenamento e gestão da floresta portuguesa, essencial para a diminuição dos incêndios florestais. De facto, na última década (IFN, 2006) os incêndios consumiram cerca de 107 mil ha/ano, representando 3% da área florestal total, ou seja, o correspondente a uma perda de 400 mil toneladas de biomassa por ano.

Os incêndios têm afectado principalmente os pinhais, os quais viram a sua área reduzida de 2500 para 710,6 mil hectares entre 1982 e 2005.

Para contrariar este flagelo foi lançado em 2006 o concurso para atribuição de 15 centrais de biomassa. À margem deste processo o estado português permitiu ao grupo Altri/EDP a construção de 5 novas centrais e a ampliação de potência de 10 para 20MW da central de Mortágua, esta já em funcionamento desde 2003. Com este plano prevê-se atingir em 2010 um acréscimo de 250MW em potência instalada. A figura seguinte podemos visualizar a coincidência espacial entre o risco estrutural de incêndio florestal e a localização de algumas destas centrais.
Figura 4 – O risco de incêndio florestal e a localização das novas centrais de biomassa.

Não se pode contudo que o lançamento destas novas centrais é o primeiro passo trilhado neste domínio. Desde os anos 70 que as indústrias madeireiras utilizam a biomassa para produção de energia. De facto, segundo os dados do sector, em 2003, a biomassa florestal assegurou 73% do consumo energético destas indústrias, sendo este valor equivalente a uma produção de 1730GWhe de energia eléctrica.

Os defensores desta iniciativa, as organizações dos proprietários florestais e as empresas das energias renováveis, afirmam que estas centrais vão promover a limpeza da floresta através da utilização dos desperdícios da exploração florestal e da recolha dos matos. Esta acção dará assim uma rentabilidade económica aos operadores florestais, transformando um desperdício numa matéria-prima para a indústria da energia, ao mesmo tempo que promoverá a gestão da floresta. A redução da carga combustível da floresta será responsável pela diminuição da intensidade dos fogos florestais, substituindo uma combustão realizada na natureza, responsável por fortes perdas económicas, numa combusção em ambiente controlado (centrais de biomassa), geradora de riqueza na economia e no ambiente. O quadro 1 apresenta as quantidades de biomassa florestal passíveis de serem utilizadas anualmente.
Quadro 1 – Proveniência das quantidades de biomassa florestal em Portugal.

<table>
<thead>
<tr>
<th>Proveniência da biomassa florestal</th>
<th>Quantidade (toneladas/ano)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indústria madeireira</td>
<td>200 000</td>
</tr>
<tr>
<td>Floresta</td>
<td>600 000</td>
</tr>
<tr>
<td>Áreas artilhadas</td>
<td>400 000</td>
</tr>
<tr>
<td>Bosques e baiadas</td>
<td>1 000 000</td>
</tr>
<tr>
<td>Total</td>
<td>2 200 000</td>
</tr>
</tbody>
</table>

GERESIG – Sistema de gestão de biomassa

A principal dificuldade de criação de um mercado de biomassa florestal tem origem no facto de não existir um plano de gestão da sua exploração, através do qual os proprietários, associações ou autarquias se interessem por conhecer o potencial de que dispõem.

O sistema de informação geográfica desenvolvido permite integrar vários níveis de informação de carácter espacial num único modelo sendo capaz de fornecer (1) a distribuição das produções de biomassa, (2) a sua evolução temporal e (3) as condições da sua explorabilidade.

Neste trabalho foi efectuada a estimativa de biomassa resultante das operações de desbaste e corte final, para um período de dez anos (2007-2017). Para a sua prossecução foram consideradas as seguintes etapas sequenciais:

1. Folha de cálculo de produção de biomassa;
2. Aplicação do método de interpolação - Kriging;
3. Quantificação da biomassa;
4. Explorabilidade da biomassa.

A produção de biomassa teve como base a recolha de dados dendrométricos dos povoamentos florestais realizadas através da realização de um inventário florestal em 2006.

A estimativa da produção actual de biomassa foi realizada recorrendo às funções de Silva et al., (1991), as quais permitem obter a estimativa dos pesos verde e seco de biomassa, para o pinheiro bravo e eucalipto.

A previsão da produção futura foi realizada através de uma das formas sugeridas por Clutter et al., (1963) que asenta na previsão da densidade do povoamento e nos valores de outras variáveis de entrada, que irão estar presentes na idade projectada e que, dessa forma, resolvarão a equação ou equações que serão utilizadas para estimar a produção. Para tal, recorreu-se à modificação das estimativas da produção explícita da produção actual para prever a produção futura. Os estimadores utilizados foram a altura (h), o diâmetro à altura do peito (d), a idade (t) e o número de árvores por hectare (N).

O procedimento seguinte consistiu em definir o tipo de condução cultural que servisse de base à gestão do povoamento, no período de simulação, tendo como condição a sustentabilidade do ecosistema. Além da idade e da classe de qualidade, é a densidade, entendida como grau de ocupação de uma estação florestal, que determina o volume em pés que essa estação é capaz de sustentar (Oliveira, 1985).

Como método experimental de condução dos povoamentos foi escolhido o Factor de Wilson. Esta escolha teve por base as indicações de diversos autores estrangeiros que apresentam com particular interesse o cálculo da relação $N = \frac{1}{W_{1,10}}$ e pela correlação que Hummel et al., op. cit. Oliveira 1985 estabeleceram entre os diversos graus de desbaste pelo baixo (C, C/D, D e E) e o Factor de Wilson, o que permite a sua aplicação imediata sem recurso a tabelas de produção. A condução cultural escolhida foi o desbaste pelo baixo, grau C/D, correspondente a um valor do índice de 0,2. O número de árvores a retirar nas parcelas sobrelotadas não é calculado directamente, ele é fruto da diferença entre o número de árvores correspondente a uma situação de sobrelotação e o número que equivaleria à situação ideal (FW = 0,2).

Nesta fase de construção do GERESIG, já se conseguiu predizer, para as parcelas, as quantidades de biomassa passível de ser extraída em função da espécie e da operação cultural que lhe dá origem (desbaste ou corte final).

O conhecimento da distribuição da biomassa implica a transposição de uma informação pontual, aliada na análise dos valores obtidos por inventário nas diversas parcelas, para uma informação alargada a toda a região, ou seja, estendida aos pontos não amostrados.

Para levar a cabo tal tarefa aplicou-se o método de Kriging (método geoestatístico). O método de Kriging (deriva do nome do seu criador Krige), utiliza um sistema de interpolação dito local, uma vez que neste tipo de interpolação, os valores são obtidos a partir de valores pontuais
localizados numa área envolvente do ponto a estimar. Neste método, as perturbações locais são integradas sem afetar a geração espacial de outros pontos mais afastados (Alves et al., 1999). A variável em estudo denominamos deste caso, variável regionalizada. As propriedades desta variável são intermédias entre uma variável totalmente aleatória e uma totalmente determinística, apresentam continuidade de ponto para ponto, mas as mudanças são tão complexas que não são possíveis de descrever por nenhuma função determinística.

A técnica de Kriging assume que os dados recolhidos de uma determinada população se encontram correlacionados no espaço. Isto é, tem como pressuposto que, pontos próximos no espaço tendem a ter valores mais parecidos do que pontos afastados. Os métodos de interpolação desenvolvidos por Matheron, Krieger e seus colaboradores são ótimos no sentido de que os pesos de interpolação são escolhidos de modo a que se optimize a função de interpolação, isto é, proporcionem a Melhor Estimativa Linear não Enviada - Best Linear Unbiased Estimative (BLUE), do valor da variável num dado ponto. É linear porque as suas estimativas são combinações-lineares ponderadas dos dados existentes; é não enviada pois procura que a média dos erros (desvios entre o valor real e o valor estimado) seja nula; é a melhor, porque os erros de estimativa apresentam uma variância (variância da estimação) mínima (Burrough et al., 1988).

A figura seguinte mostra a distribuição da produção de biomassa com recurso ao método de Kriging linear.

Figure 5 - Distribuição da produção de biomassa aplicando o método de Kriging linear.

Contudo, o acto de gestão exige, para além do conhecimento da distribuição das quantidades do recurso, o conhecimento da sua explorabilidade. Quer isto dizer, que nem toda a biomassa quantificada se encontra passível de ser explorada, face às condições limitadoras de certos factores, como o declive do terreno ou a distância a vias de comunicação. Surgiu, assim, a necessidade de ponderar a actuação destas limitações na possibilidade de extração dos resíduos. Embora existam mais factores que limitam a sua exploração, como a rugosidade do terreno, estes não foram utilizados face à falta de informação que existia acerca deles. Como resultado, a distribuição das quantidades de biomassa passa a ser assim repartida em função das várias classes de explorabilidade: (1) exploração sem limitações, (2) exploração com restrições e (3) exploração com grandes restrições.

Na figura 6 podemos observar a distribuição das quantidades de biomassa total a extraer em redor da central, nas regiões de explorabilidade elevada (sem restrições).
Figura 6 - Distribuição das quantidades de biomassa total a extrair nas regiões de explorabilidade elevada (sem restrições).

Por formas a melhor exemplificar a potencialidade deste sistema tornemos a observação da figura 6. O gestor florestal fica a saber com este tipo de informação onde encontrar as maiores quantidades de biomassa a extrair, em determinado ano. Note-se que no exemplo da figura 6 é possível identificar especialmente a região onde a quantidade de biomassa a extrair possa ser, por exemplo, superior a 40 toneladas por hectare, ficando ainda a saber que estas classes de grande produção de biomassa se concentram numa área de 428 hectares (338 ha - [117]).
classe 45 a 50 ton/ha e 90 ha - classe 50 a 55 ton/ha). Este tipo de informação é extremamente útil quando se efetu a análise custo/benefício dos trabalhos de exploração florestal. Com esta metodologia, e tendo em conta o preço de venda de biomassa e os custos operacionais da sua extração e transporte, pode ser definida a quantidade mínima de biomassa a recolher por hectare que torne a exploração lucrativa. Adicionalmente são conhecidas as condições em que será realizada a exploração (declive e distâncias a vias de comunicação) podendo-se dessa forma ajustar equipamentos e procedimentos. A maior potencialidade do sistema criado é o de permitir a visualização da distribuição das quantidades de biomassa, permitindo uma gestão espacialmente dirigida. Com o GERESIG é ultrapassada a metodologia dos estudos tradicionais na qual apenas eram indicadas as quantidades de biomassa totais para uma determinada região; com este sistema passamos a saber dentro dessa região como se distribuem essas quantidades e em que condições técnicas se pode efectuar a sua exploração.

Biomassa em Portugal – Cenários de desenvolvimento

Os industriais das indústrias da madeira e do papel vêm, o licenciamento da centrais de biomassa com maus olhos, afirmando que o preço a ser pago pelas centrais não cobriria as despesas na remoção dos desperdícios florestais e dos matos. Temem assim que seja utilizado material mais nobre, como a madeira, da qual estas indústrias já se encontram deficitárias. Para exemplificar esta afirmação basta observar que a indústria do papel prevê, para 2009, que a madeira importada cubra mais de 50% das suas necessidades. Por outro lado, o debate sobre gestão florestal sustentável aponta claramente num sentido contrário à utilização sem limitações de matos e biomassa como fonte de energia pelo menos dois aspectos - conservação de biodiversidade e conservação do solo.

Neste cenário, segundo os mesmos actores, perder-se-á na cadeia de valor, tanto a nível de rentabilidade como de emprego, como se pode ver na figura 7.

Figura 7 – Diferença no emprego e no valor acrescentado na utilização de biomassa florestal entre a indústria da pasta e do papel e a produção de bioenergia.

Fonte: CELIPA e AIMNP, 2006
Esta situação de dúvida nas quantidades e rendimentos que se possam vir a obter da floresta está a gerar um interesse crescente pelo aproveitamento de biomassa com origem em culturas agrícolas, bem como no desenvolvimento de culturas dedicadas à produção de energia. Começa assim a existir um interesse crescente na área agrícola por aproveitamentos de determinadas operações de manutenção das culturas como as podas do olival ou das vinhas. No entanto, o baixo valor de biomassa por unidade de área tornará esta opção desvantajosa face à instalação de culturas florestais de curta rotação.

No sector florestal perfil-se o desenvolvimento de espécies como o Eucalipto, que já se encontra presente no nosso património florestal, bem como a introdução de novas espécies, como a Paulownia (Paulownia elongata x fortunei) ou o Choupo (Populus euroamericana I-214) resultantes de melhoramentos genéticos em ambiente laboratorial.

A avaliação dos riscos e consequências que o mercado da bioenergia trará ao nosso património florestal deverá ser devidamente alvo de estudo aprofundado, especificamente ao nível da fertilidade do solo, das necessidades hídricas e das pragas e doenças associadas.
Bibliografia

