Abstract: The main goal here is to optimise the finite element mesh used to predict plasticity induced crack closure (PICC). A numerical model was developed for a M(T) specimen made of 6016-T4 aluminium alloy. The parameters studied were the size of most refined region perpendicularly to crack flank (y_m) and along propagation direction (x_r), the size of finite elements near crack tip (L_1) and the vertical size of refinement close to crack flank ($y_{A/B}$). A maximum size of about 1.3 mm was found for y_m, but a smaller value has a limited impact on PICC. An analytical expression was proposed for x_r, dependent on D_K and K_{max}. An optimum value seems to exist for L_1.