International Congress on Landscape Ecology
Understanding Mediterranean Landscapes:
Human vs. Nature

Hakan Alphan, Meryem Atik, Emel Baylan and Nilgül Karadeniz (eds.)
PAD Publications No. 2, 2015
Landscape Research Society (PAD)

Landscape Research Society is a national non-governmental organization which was established in 2012 in Ankara, Turkey. The goals and objectives of the society;

- To approach natural and cultural components together pursuant to landscape scale; to emphasize flows and functions existing in the landscape and to preserve this structure with human and all the other living and non-living things in landscape; to contribute to transfer these components to next generations and to mold public opinion about these issues;

- To assess every human activity affecting natural and cultural landscapes from a social and ecological benefit point of view and to reconstruct these activities within this regard;

- To redefine human needs within place perception, to approach production/consumption patterns pursuant to resource management and to enhance and spread technologies, architecture, life styles that fits that management best.

Some of the research areas of the society;

- Natural landscape
- Cultural landscape
- Protected areas
- Industrial areas
- Landscape ecology
- Landscape quality
- Urban areas
- Urban accessibility
- Urban design
- Urban regeneration and renewal
- Urban open-green spaces
- Landscape perception
- Landscape philosophy
- Landscape restoration
- Landscape planning and management
- Rural areas and agricultural landscape
- Watershed management
- Coastal area management
- Historical and archeological areas
- Wetlands
- Natural vegetation and flora
- International conventions related to landscape
- Remote sensing and GIS
- Subjects related to landscape in neighboring disciplines such as architecture, sociology, biology, geology, geography, urban and regional planning, agricultural engineering.

For more information please visit www.pad.org.tr
Foreword

International Congress on Landscape Ecology Understanding Mediterranean Landscapes; Human vs. Nature was held between 23 and 25 October 2014 in Antalya, Turkey. The Congress was hosted and organized by Landscape Research Society (PAD). Main supporters were IALE International, IALE Europe, Society for Conservation Biology and Ministry of Forestry and Water Affairs the Directorate of Nature Conservation and National Parks. The Congress brought together 85 participants from 17 countries.

This event was the first international meeting that particularly focuses on landscape ecology in Turkey. The main goal of the event was to exchange knowledge and information to create cooperation between related institutions and experts from different disciplines concentrated on Mediterranean landscapes and dealing with various aspects of landscape ecology.

For their assistance with the compilation of this Proceedings I extend my sincere appreciation to the organising committee members and also editors: Hakan Alphan, Meryem Atik, Emel Baylan and Nilgül Karadeniz. I present my deepest gratitude to the former president of IALE Felix Kienast, for supporting us. I thank to Almo Farina, Teresa Pinto Corriera and Linda Olswig Whittaker for coming and gracing our event with their keynotes; The Ministry of Forestry and Water Affairs Nature Conservation and National Parks Department especially Nihan Yenilmez Arpa for becoming a part of our society; scientific committee members for their invaluable comments, Interaktif Is Web Solutions company and Doruk Karaboncu for solving every technical problem for us; Akdeniz University Faculty of Agriculture Department of Landscape Architecture and Veli Ortaçoşme for his local support; Congress volunteers for their efforts during the congress and preparation of this Proceedings: GÜlin Özdemin, Büşra Tanrıkulu, Ali Bakır, Buket Şenoğlu, Deniz Akman, Esat Furkan Engin, Esra Akgül, Filiz Ubay, Meltem Demiryürek, Merve Tekin, Veysel Dağ and lastly to the distinguished guests and participants for contributing their valuable time to attend this event.

President
Semiha DEMİRBAŞ ÇAĞLAYAN
Table of Contents

Indigenous Knowledge of Water Management towards Sustainable Development
by Ali Hamidian, Ali Reza Moghaddamnia and Mehdi Ghorbani ... 1

Relationship among Place Identity, Anthropomorphism and Aesthetic Value in Landscapes from a Southwestern European Coastal Natural Park
by Jacinta FERNANDES, Gabriela GONÇALVES, Joana BIZARRO, Susana SILVA and Juciar MEDEIROS .. 9

Understanding Landscape-Level Environmental Changes in the Mediterranean
by Hakan ALPHAN .. 19

Tourism Developments and Coastal Landscape Change in Antalya, Turkey
by Veli ORTACESME, Meryem ATIK and Emrah YILDIRIM .. 27

Investigation of The Dynamic Transport of Saharan Desert Dust – IV
by A. Nihat YÜCEKUTLU and A. Yavuz YÜCEKUTLU .. 37

Holdings and Land Managers Heterogeneity in Mediterranean Landscapes - A Southern Portugal Case Study
by Filipe BARROSO and Teresa PINTO-CORREIA ... 45

The Portuguese Montado as a High Nature Farming System: an Interdisciplinary Methodology Linking Grazing Management to Biodiversity Value
by Carla AZEDA, João E. RABAÇAand Teresa PINTO-CORREIA .. 57

Agroforestal Suitability Evaluation of a Subregional Area in Portugal Using Multicriteria Spatial Analysis
by Luis QUINTA-NOVA and Natália ROQUE .. 65

Environmental Risk Analysis of Turkey Under Climate Change Scenarios Using Spatial Modelling: Application of Net Primary Productivity
by Suha BERBEROGLU, Cenk DONMEZ and Ahmet CILEK ... 77

Comparison of Processes of Landscape Change in the Eastern and Western Mediterranean Region
by Theo VAN DER SLUIS, Marion BOGERS, Evangelos PAVLIS and Isabel Loupa RAMOS 87

The Relationship between Rural Settlements and the Character of the Landscape in Vernacular Settlements
by Hacer MUTLU DANACI and Meryem ATIK ... 97

Decreasing Rural Migration through Vernacular Natural Resources; a Case study: the Village of Turan
by Meltem WALLACE, Özlem AKAT and Ash GUNES ... 105

Range Contraction During Severe Drought Along the Western Edge of the Northern Bobwhite Range
by Zeynep OKAY DURMUŞOĞLU, X. Ben WU and Markus J. PETERSON .. 115

Recognizing Historical Natural Layers of Rural Landscape through Acquisition to the Landscape Identity (Case Study: Ziarat Village of Gorgan, Golestan Province of Iran)
by Ali Reza MIKAELI –T, Mahsa BAZRAFSHAN .. 125
Vegetative Land Cover Change in Coastal Area of Kumluca - Finike, Antalya
by Ahmet BENLİAY and Orhun SOYDAN .. 135

Key Biodiversity Area - Landscape Conservation in Dağca and Bozburen Special Environmental Protection Area: The outcomes 9 Small Scale Parallel Projects
by Gökmen ARGUN, Süreyya İSFENDİYAR OĞLU and Harun GÜÇLÜSOY .. 145

Identification of Sensitivity to Land Degradation and Desertification with Respect to Landscape Services
by Ádám KERTÉSZ, Anna ÖRSI and Adrienn TÓTH .. 155

Ecosystem Services at Forest Landscapes in Turkey and Their Management
by Başak AVÇIOĞLU ÇOKÇALIŞKAN, Başar BAKIR, Ayça BABAK and Nilgül KARADENİZ161

Monitoring and Assessment of Spatial and Temporal Characteristics of Coastal Build-up Changes: An Integrated Approach
by Hakan ALPHAN .. 171

Stabilize Shifting Sand Dunes Using Mineral Mulch
by Salman ZARE, Mohammad JAFARI, Hassan AHMADI, Hassan ROHIPOUR and Ali TAVILI177

Fragmentation of SW Iberian Rangeland Farms as Assessed from Fencing and Changes in Livestock Management. Effects on Soil Degradation
by Joaquín Francisco LAVADO CONTADOR, Manuel PULIDO FERNÁNDEZ, Susanne SCHNABEL and Estela HERGUDO SEVILLANO .. 183

Ecological Planning as a Conservation Tool to Protect Wetland Ecosystem (Case Study Quri-Gol Wetland)
by Nasim SHAKOURI, Sara ZOLNOUN and Mehmet Emin BARİŞ .. 193

Artificial Wetlands and Phytoremediation as a Green Infrastructure for Wastewater Purification
by Ash GÜNEŞ, Handan ÇAKA R and Meltem WALLACE .. 201

Comprehension of the Hydrological Model Answer of the Medjerda Basin for the Physical Spatialized Event Model MERCEDES: Application in the Rhaghay Catchment
by Ahlem GARA, Khoulouad GADER, Donia JENDOUBI, Christophe BOUVIER, Mohamed BERGAOUI and Mohamed Raouf MAHJOUB .. 211

3D Technology As a Collaborative And Multidisciplinary Communication Tool For Studying Historically Important Sites. The Case Of Jericho / Palestine
by Ramzi HASSAN, Shadi GHADBAN, Omar ABOUDI, Yousif KHATEEB, Hamed SALEM and Nour SHARKASI .. 223

Use of GIS in Greenway Planning
by Umut Pekin Timur and M. Emin Barış .. 233

Water Applications for Smartphones, New Opportunity for Water Education
by Ali HAMIDIAN, Arash MALEKIAN and Ali SALAJEGHEH .. 241

The Analysis and Evaluation of Mediterranean Landscape Patterns by Using Landscape Metrics: Case Study the Princes’ Islands
by Gül Aslı AKSU, Adnan UZUN and Hakan YENER .. 249

Landscape Structure and Health Indicators: How Are They Related?
by Abdullah AKPINAR .. 257
Agroforestral Suitability Evaluation of a Subregional Area in Portugal Using Multicriteria Spatial Analysis

Luis QUINTA-NOVA1, 2, a and Natália ROQUE1, b

1Escola Superior Agrária do Instituto Politécnico de Castelo Branco, Quinta da Senhora de Mércules, 6000 Castelo Branco, Portugal

2Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Quinta da Senhora de Mércules, 6000 Castelo Branco, Portugal

a lnova@ipcb.pt, b nroque@ipcb.pt

Abstract

It is generally agreed that the choice of the most suitable uses based in soil and climatic factors, complemented with socio-economic criteria, promotes sustainable use of rural land. There are, however, different methodologies for defining the soil suitability to agroforestal systems or natural and seminatural ecosystems, including agricultural uses, forest plantations, agro-forestry areas and priority areas for nature conservation. Many of these methods rely on decision support systems based on multicriteria spatial analysis. In this study we intended to determine the different levels of suitability for agro-forestry use in a subregion located in the center of Portugal, near the border with Spain. To the effect we used a set of soil and topographic variables. The legal constraints and land cover were also included. The suitability evaluation was performed using the Analytic Hierarchy Process (AHP). A spatial analysis was also performed in order to confront the land use matrix with the soil potentiality. This analysis allows to identify areas where the use and management it is in accordance with their suitability, as well as areas where the use must be subject to a conversion or at least to a change of management mode.

Key Words: Land use suitability, Analytic Hierarchy Process, Geographic Information Systems, Multicriteria analysis

INTRODUCTION

Agroforestal management aims to choose the land uses according to soil suitability, contributing to an integrated and economically sustainable use of the land. The unprecedented expansion of human need for resources requires an approach to decisions regarding land use that would ensure the maintenance of biodiversity and sustainable natural resource utilization for the continued delivery of ecosystem services.

According to FAO (1976) suitability is a measure of how well the qualities of a land unit match the requirements of a particular form of land use. The process of land suitability classification is the evaluation and grouping of specific areas of land in terms of their suitability for a defined use.
Site suitability assessment is inherently a multicriteria problem. That is, land suitability analysis is an evaluation/decision problem involving several factors. In general, a generic model of site/land suitability can be described as:

\[S = f(x_1, x_2, \ldots, x_n) \] \hspace{1cm} (1)

Where \(S \) = suitability measure; \(x_1, x_2, \ldots, x_n \) = are the factors affecting the suitability of the site/land.

Multicriteria decision analysis (MCDA) deals essentially with complex decisions that involve a large amount of information, a number of alternative outcomes and criteria to assess these outcomes. MCDA techniques can be used to identify a single preferred option, to rank options, to short-list a number of options for further investigation, or simply to distinguish acceptable from unacceptable alternatives (Malczewski 2004, Roy 1996, Collins et al. 2001). Thus, multicriteria evaluation is used to solve spatial decision problems derived from multiple criteria. By integrating the evaluation techniques with GIS, the influential factor are evaluated and more accurate decision were taken (Parimala & Lopez 2012).

The Analytic Hierarchy Process - AHP (Saaty 1980) is a multi-criteria tool considered to be relevant to nearly any ecosystem management application that requires the evaluation of multiple participants or complex decision-making processes are involved (Schmolzd & Peterson 1997, Schmolzdt et al. 2001, Reynolds & Hessburg 2005).

This work was intended to search for the suitable areas which can be exploited for agroforestal land uses in the subregion of Beira Interior Sul. In this research, site suitability analysis was carried out using GIS and the AHP as multicriteria decision analysis (MCDA) technique.

A spatial analysis was also performed in order to confront the land use with the soil potentiality. This analysis allows to identify areas where the use and management it is in accordance with their suitability, as well as areas where the use must be subject to a conversion or at least to a change of management mode.

MATERIAL AND METHODS

The subregion of Beira Interior Sul (NUT III) includes four municipalities: Idanha-a-Nova, Penamacor, Vila Velha de Ródão and Castelo Branco (Figure 1).

![Figure 1: Study area location.](image)
As Figure 2 shows that the majority of the territory is occupied by forest and agroforestry uses (60.8 %) and agriculture (36.2 %).

Figure 2: Land use map (2007)

Figure 3 presents the methodology used to determine suitability for agroforestal land uses, namely production forest, intensive agriculture and extensive agriculture/ multifunctional uses (agroforestry).
The classification of agroforestal suitability resulted from the integration of a set of biophysical criteria using ArcGIS 10.2 software, based on the climate and soil requirements of crops and forest stands and the optimal operating conditions associated with different uses. Geoprocessing and spatial analysis was performed to geographic data, namely soils, elevation in order to produce the following layers: soil potentiality, slope and aspect.

To define the soil potential for different crops and forest stands the soil theme attribute table was edited. Soils were reclassified in potentiality classes shown in Table 1.

Table 1: Soil potentialities (UNESUL 1996)

<table>
<thead>
<tr>
<th>Potentiality class</th>
<th>Soil characteristics</th>
<th>Potential use</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Different soil types that present high to very high constraints to production uses due to soil thickness, vulnerability to erosion or stoniness. With very low fertility.</td>
<td>Woodland and scrub with soil protection and recovery functions. In some cases, more favorable, pasture under a “montado” system.</td>
</tr>
<tr>
<td>II</td>
<td>Soils with coarse texture, without severe erosion problems, generally with low to very low fertility.</td>
<td>Forestry (pineyards and “montado” system), pastures, vineyards. In some cases cereal crops and horticulture if water and organic matter is available.</td>
</tr>
<tr>
<td>V</td>
<td>Soil with high fertility.</td>
<td>Good for different uses depending from drainage, soil texture and availability of irrigation water: irrigations systems. Intensive forestry.</td>
</tr>
<tr>
<td>Rocky outcrops</td>
<td>-</td>
<td>Not suitable</td>
</tr>
<tr>
<td>Social areas</td>
<td>Urban areas and water bodies</td>
<td>Not suitable</td>
</tr>
</tbody>
</table>

The reclassification of soils in its potentiality is based in their physical and chemical proprieties, namely: texture, structure, field capacity, mineral reserves, organic matter, types of clay, cation exchange capacity, degree of saturation, pH, etc. The factors of soil formation (pedogenesis) have also importance to evaluate soil fertility (UNESUL, 1996).
A digital elevation model (DEM) was generated from contour maps with a pixel size of 100 m. Then we created layers of aspect and slope classes from de DEM. Those layers were reclassified based in their importance as constraints to agroforestry uses. Slope is a limiting factor to land use, affecting, for example, the machinery access and susceptibility to soil erosion. Aspect determines the amount of incident solar radiation, influencing the microclimate.

The different layers were classified in three suitability levels: low or no suitability (1), medium suitability (2) and high suitability (3). After creating layers resulting from the reclassification in suitability levels, the general suitability for each land use was performed using a multicriteria decision analysis - the Analytic Hierarchy Process - AHP (Saaty, 1980).

AHP is based on three main principles which are decomposition, comparative judgment and synthesis of priorities. Pairwise comparison is the basic measurement used in the AHP procedure. The synthesis principles takes of the derived ratio scale local priorities in the various level of the hierarchy and constructs a composite set of alternatives for the elements at the lowest level of the hierarchy (Malczewski 2004). The fundamental concept of AHP lies in proceeding from a pairwise comparison of criteria to evaluate the weights that assign relative importance to these criteria. This method is a very popular in calculating weighting factor.

Pairwise comparison is performed based on the rating scale proposed by Saaty (1980) shown in Table 2. Two factors are compared using the rating scale which ranges from 1 to 9 with respect to their relative importance. This parameter is computed against each pair based on the opinion of experts. The relative importance between each criteria is shown in Table 3.

<table>
<thead>
<tr>
<th>Intensity of Importance</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>2, 4, 6, 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Equal importance of both elements</td>
<td>Weak importance of one element over another</td>
<td>Essential or strong importance of one element over another</td>
<td>Demonstrated importance of one element over another</td>
<td>Absolute importance of one elements over another</td>
<td>Intermediate values between two adjacent judgements</td>
</tr>
</tbody>
</table>

Table 2: Pairwise Rating Scale.

Table 3: Pairwise Comparison Matrix

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Soil suitability</th>
<th>Slope</th>
<th>Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil suitability</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Slope</td>
<td>1/9</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Aspect</td>
<td>1/7</td>
<td>1/5</td>
<td>1</td>
</tr>
</tbody>
</table>

ArcGIS software was used to process the input where the priority of each factor is calculated using the eigenvectors. The weights calculated using AHP are shown in Table 4.
Table 4: Criteria weights

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Eigenvalues</th>
<th>Eigenvector of largest Eigenvalue</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil suitability</td>
<td>3.3974</td>
<td>0.9766</td>
<td>77.91%</td>
</tr>
<tr>
<td>Slope</td>
<td>-0.1987</td>
<td>0.2018</td>
<td>16.10%</td>
</tr>
<tr>
<td>Aspect</td>
<td>-0.1987</td>
<td>0.075</td>
<td>5.99%</td>
</tr>
</tbody>
</table>

[Consistency ratio CR = 0.3821]

As a conclusion from the literature reviews and discussion with experts in agrarian sciences, a criterion factor for suitable areas for forest and agriculture as shown in Table 5.

Table 5: Criterion Factor and Ranking

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Classes</th>
<th>Production forest</th>
<th>Intensive agriculture</th>
<th>Extensive agriculture/ Multifunctional use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil suitability</td>
<td>Class I</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Class II</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Class III</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Class IV</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Class V</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Social areas</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rocky outcrops</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Slope</td>
<td>0 - 3%</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3% - 8%</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8% - 16%</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16% - 30%</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>> 30%</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aspect</td>
<td>Flat</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>South/West</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>North</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

3 - high suitability; 2 - medium suitability; 1 - low suitability / no suitability

In the end, a spatial analysis was performed in order to confront the land use with the soil potentiality. For that purpose the ArcGIS command combine was used. This command generate combinations of values from two layers. From the analysis of the resulted layer the degree of compliance between land uses and land suitability.

RESULTS, DISCUSSION AND CONCLUSION

In order to obtain the slope and aspect maps (Figure 4 and 5) from DEM a surface analysis was performed.
From the reclassification of soil layer we obtain a map representing its potentialities (Figure 6). This map allows to identify the forest and agricultural uses more suitable to the different soils, and areas not suitable for production.
In the following maps we present the results of Analytical Hierarchy Process (Figure 7, 8 and 9).
Figure 8: Suitability for intensive agriculture.

Figure 9: Suitability for Extensive agriculture/ Multifunctional use.

Figure 10 shows the degree of accordance between the soil potentiality and the land use resulting from local spatial analysis using combine tool.
The use of GIS for identifying and mapping land use suitability was verified in this study. GIS is one of the mostly used technologies in land suitability mapping. The methodology presented in this paper using GIS and MCDA as a tool to aid decision-making process with particular case study of locating suitable areas for different agroforestal uses.

This methodology allows the correct evaluation of the natural suitability of the land, using a set of biophysical criteria. It contributes, also, to the discussion about the adequacy of current and future uses taking into account the environmental carrying capacity.

The implementation of this spatial data analysis approach could be a useful tool for stakeholders in land use planning and management.

ACKNOWLEDGEMENTS
This research was funding by FCT - Fundação para a Ciência e a Tecnologia in the aim of the PEst-OE/AGR/UI0681/2011 project.

REFERENCES

