AVALIAÇÃO DOS FACTORES LIMITANTES À OBTENÇÃO DO ESTATUTO DE ÁREA INDEMNIZADA DE BRUCELOSE NOS PEQUENOS RUMINANTES NO SUL DA BEIRA INTERIOR (PORTUGAL)

Manuel Vicente de Freitas Martins

CONSTITUIÇÃO DO JÚRI

Prof. Doutor Salvador M. C. Massano Cardoso Prof. Doutor Virgílio S. Almeida

Prof. Doutor José Henrique Pinto de Barros

Prof. Doutor Armando Carvalho Louzã

Prof. Doutor Virgílio da Silva Almeida

Prof. Doutor Fernando Jorge Silvano Boinas

Prof. Doutora Yolanda Maria Vaz

2001
LISBOA
À Adelina,
Ana Rita e Ana Catarina
Agradecimentos

Ao finalizarmos este trabalho não queremos deixar de expressar o mais sincero reconhecimento a todos aqueles que, sendo pessoas ou instituições, contribuíram com a sua ajuda para que o mesmo fosse levado a bom termo.

Em primeiro lugar, agradecer à Escola Superior Agrária de Castelo Branco e à Faculdade de Medicina Veterinária de Lisboa terem permitido a realização deste trabalho de Doutoramento.

Um agradecimento especial ao meu orientador, ao Prof. Dr. Virgílio da Silva Almeida, não só pelo trabalho de orientação, mas pela dedicação e amizade que demonstrou ao longo de todos estes anos.

À minha colega Isabel Ferreira Neto, pela disponibilidade e apoio prestado no desenvolvimento do trabalho e pela amizade que nos liga desde o tempo de estudantes.

À minha colega Yolanda Vaz pela disponibilidade, apoio e paciência que demonstrou no esclarecimento das muitas dúvidas surgidas, e ainda pela sempre boa disposição.

Ao meu colega Telmo Nunes da Faculdade de Medicina Veterinária de Lisboa e ao Eng.º Armando Ferreira da Escola Superior Agrária de Castelo Branco, pelo apoio dado na análise estatística do trabalho.

Aos meus colegas Álvaro Lopes, Fernando Monteiro, Fernando Tendinha, Herminio Correia e Portela Reis, pelo apoio na realização do trabalho e pela amizade demonstrada. Pela mesma razão, agradeço ao Eugénio, ao Chico, ao Paulo Afonso, ao Vaz, ao Jorge, ao Galvão, ao Acácio e ao Pinheiro, sem a
colaboração dos quais, teria sido difícil realizar fazer os inquéritos epidemiológicos.

Agradecer à Ovibeira – Associação de Produtores de Ovinos do Sul da Beira, por ter permitido o acesso aos dados utilizados no trabalho, e em particular ao seu Presidente Eng.º Nuno Megre e à Manuela Tadeu pela inestimável disponibilidade no apoio prestado.

À Direcção Regional de Agricultura da Beira Interior pelos dados facultados, não esquecendo os funcionários do Laboratório de Apoio Regional (Alcains) e da minha colega, Ana Maria Belo.

À Professora Maria Isabel Oliveira pela ajuda prestada na tradução do resumo para inglês.

Aos Delegados de Saúde de Castelo Branco e Idanha-a-Nova pelas informações prestadas.

A todos os que não citei mas que de uma forma ou de outra possam ter contribuído para a realização deste trabalho, expresso os meus sentidos agradecimentos.
Resumo

A presente investigação, sobre a brucelose nos pequenos ruminantes, decorreu na área de intervenção da Organização de Produtores Pecuários do distrito de Castelo Branco (OVIBEIRA).
A análise preliminar, detectou deficiências no registo e na comunicação de dados, nomeadamente na identificação de Produtores e de animais.
A análise espaço-temporal, identificou um agregado-mais provável de casos de brucelose, que engloba o concelho de Idanha-a-Nova - exceptuando as freguesias de Penha Garcia e de Monfortinho - e as freguesias do concelho de Castelo Branco adjacentes ao concelho de Idanha-a-Nova.
Foi avaliada a estratégia de utilização dos testes serológicos e a metodologia de certificação do estatuto sanitário dos rebanhos.
Um estudo observacional retrospectivo, identificou os principais factores de risco que contribuem para a ocorrência e/ou a perpetuação da infecção brucélica: compra de fêmeas; partos em Março; separação de fêmeas no parto e presença de cães.
A obtenção do estatuto de zona geográfica indemne de brucelose, dependerá da melhoria dos sistemas informativos, dos critérios que fundamentam a certificação sanitária, do maneio dos rebanhos e da dinâmica futura de educação sanitária dos Produtores.

Palavras chave: Brucelose; Brucella melitensis; Ovinos; Caprinos; Pequenos Ruminantes; Factores de risco.
Abstract

The present study concerning brucellosis took place in the area of the small ruminant breeder organization of the Castelo Branco region (OVIBEIRA). A database linked to a geographical information system was built with the specific goal of evaluating the National Brucellosis Eradication Programme in small ruminants from 1994 to 1999. Deficiencies at registering and communicating data were observed specially on the identification of producers and animals. A most likely cluster of brucellosis in small ruminants was identified in the area of study: all the parishes in the municipality of Idanha-a-Nova (except Penha Garcia and Monfortinho) and the bordering parishes in the municipality of Castelo Branco.

The serological diagnosis strategy as well as the methodology for flock health status certification were also evaluated.

A detailed analysis of factors responsible for the occurrence and/or persistence of brucellosis was made using data obtained from a case-control study. It indicated that female purchase, parturition throughout March, female separation at delivery and the presence of dogs were the most important risk factors.

Reaching the status of a geographical area free from brucellosis will depend namely on the improvement of information systems, flock management, flock health certification and farmers education.

Keywords: Brucellosis; Brucella melitensis; Sheep; Goats; Small Ruminants; Risk Factors.
Resumo
Abstract
Agradecimentos
Índice de Tabelas e Gráficos
Índice de Figuras
Índice de Abreviaturas e de Símbolos

INDÍCE GERAL

CAPÍTULO 1 - INTRODUÇÃO

CAPÍTULO 2 - A BRUCELOSE

2.1 A brucelose animal
2.1.1 Epidemiologia
2.1.2 Viabilidade da Brucella
2.1.3 Patogenia
2.1.4 Sintomatologia
2.1.5 Lesões
2.1.6 Diagnóstico
2.1.7 Métodos de controlo e de erradicação
2.2 Epidemiologia da brucelose Humana

CAPÍTULO 3 - CARACTERIZAÇÃO DA REGIÃO EM ESTUDO

3.1 A Região em estudo
3.2 Indicadores demográficos e o movimento da população
3.3 Caracterização climática
3.4 Caracterização geral dos solos
3.4.1 Caracterização geológica
3.4.2 Caracterização morfológica - altitudes e declives
3.5 Hidrografia
3.6 Capacidade de uso dos solos
3.7 Caracterização geral das explorações agrícolas
3.8 Utilização da terra
3.9 O sector pecuário
3.9.1 Caracterização geral das explorações pecuárias
3.9.2 As raças exploradas
3.9.3 Maneio reprodutivo e produtivo
3.9.4 Regime alimentar
3.10 Produção e comercialização de produtos de origem animal
3.10.1 A carne
3.10.2 Leite e queijo
3.10.3 Lã

CAPÍTULO 4 - O CONTROLO E ERRADICAÇÃO DA BRUCELOSE NOS PEQUENOS Ruminantes. AS FRAGILIDADES DO SISTEMA DE INFORMAÇÃO

4.1 Evolução histórica
4.2 Avaliação da informação gerada pelas campanhas de saneamento
4.2.1 Identificação das explorações
4.2.2 Localização das explorações pecuárias
4.2.3 Tipo de rebanho (espécie animal), número, sexo e idade dos animais saneados
4.3 Identificação animal
4.4 Colheitas de sangue
4.5 Resultados dos testes serológicos
4.6 Marcação e abate dos animais reagentes
4.7 Abortos
4.8 Classificação sanitária dos rebanhos
4.9 A vacinação
4.10 Circulação animal
4.11 Brucelose Humana
4.12 Brucelose Humana no Distrito de Castelo Branco

CAPÍTULO 5 - A EVOLUÇÃO DAS CAMPANHAS DE LUTA CONTRA A BRUCÉLOSE NOS PEQUENOS RUMINANTES NA ÁREA DE ACÇÃO DA OPP - OVIBEIRA

5.1 Sistemas de informação geográfica
5.2 Material e métodos
5.2.1 Recolha da informação e construção da bases de dados
5.2.2 Número de rebanhos e de animais
5.2.3 Marcação e abate de animais reagentes
5.2.4 Prevalência aparente e a incidência
5.2.5 Coeficiente de correlação intra-rebanho
5.2.6 Dinâmica dos focos de brucelose
5.2.7 Variação da incidência
5.2.8 Taxa de extinção anual de rebanhos infectados
5.2.9 Variação do tempo despendido para extinguir os focos de brucelose
5.2.10 Índice de Moran (Moran I)
5.2.11 Análise espaço/temporal
5.2.12 Risco Relativo de ocorrência de focos de brucelose por freguesia
5.2.13 Classificações sanitárias de rebanho
5.3 Apresentação e discussão dos resultados
5.3.1 Número de rebanhos e de animais saneados
5.3.2 Marcação e abate de animais reagentes
5.3.3 Prevalência aparente de rebanhos positivos
5.3.4 Prevalência aparente a nível animal
5.3.5 Coeficiente de correlação intra-rebanho
5.3.6 Incidência de rebanhos positivos
5.3.7 Dinâmica da doença, variação da incidência e variação do tempo despendido para extinguir os focos de brucelose
5.3.8 Índice de Moran (Moran I) 157
5.3.9 Análise espaço/temporal 157
5.3.10 Classificações sanitárias dos rebanhos 160

CAPÍTULO 6 - ANÁLISE DOS CRITÉRIOS DE APLICAÇÃO DOS TESTES SEROLÓGICOS 175

6.1 Provas serológicas e protocolo de execução 176
6.2 As provas serológicas e o estatuto sanitário de rebanho 179
6.3 Definição de rebanho infectado e de rebanho indemne 187
6.4 Controlo da introdução de animais infectados no rebanho indemne 193

CAPÍTULO 7 - IDENTIFICAÇÃO E QUANTIFICAÇÃO DE FACTORES DE RISCO 195

7.1 Material e métodos 196
7.1.1 Questionário e amostragem 196
7.1.2 Armazenamento, processamento e análise dos dados 197
7.2 Resultados obtidos no estudo caso-controlo 199
7.2.1 Características gerais das explorações pecuárias amostradas 199
7.2.2 Estrutura dos rebanhos 204
7.2.3 Maneio reprodutivo 207
7.2.4 Pastor 209
7.2.5 Comércio de pequenos ruminantes 210
7.2.5.1 Compra 210
7.2.5.2 Venda 212
7.2.6 Cães “de rebanho” 212
7.2.7 Espécies animais cinegéticas 213
7.2.8 Brucelose no rebanho 213
7.2.9 Brucelose Humana – “Febre de Malta” 214
7.3 Identificação dos factores de risco– regressão logística univariável 215
7.3.1 Factores associados às explorações e ao sistemas de produção 215
7.3.2 Factores associados à composição e à estrutura de rebanho 220
7.3.3 Factores associados à época de partos 224
7.3.4 Factores associados ao pastor 231
7.3.5 Cães de rebanho 232
7.3.6 Presença de outras espécies pecuárias e de fauna silvestre na exploração 233
7.3.7 Factores associados ao comércio animal 234
7.2.8 Casos de brucelose nos rebanhos 236
7.2.9 Febre de Malta 237
7.2.10 Análise de combinação de factores 238
7.2.10.1 Correlação de Person 238
7.2.10.2 Regressão multivariável (Backward Stepwise: Wald) 241

CAPÍTULO 8 – DISCUSSÃO FINAL 247

CAPÍTULO 9 – CONCLUSÕES 263

BIBLIOGRAFIA 271

Anexo I – Especificidade e sensibilidade do (Rosa de Bengala e da Fixação do Complemento
Anexo II – Análise espaço/temporal
Anexo III – Teste Kappa
Anexo V – Legislação consultada
Índice de Tabelas e de Gráficos

Tabela n.º 1 - Especificidade e Sensibilidade do Rosa Bengala e da Fixação do Complemento (Anexo I)

Tabela n.º 2 - Área, população, freguesias e densidade populacional (por concelho)
Tabela n.º 3 - Distribuição da população por grupos etários (por concelho)
Tabela n.º 4 - Indicadores de saúde (por concelho)
Tabela n.º 5 - Número e área de explorações com S.A.U. (por concelho)
Tabela n.º 6 - Número de explorações agrícolas por classe de S.A.U. (por concelho)
Tabela n.º 7 - Distribuição da S.A.U. (ha) por concelho
Tabela n.º 8 - Distribuição da S.A.U. por número de blocos (por concelho)
Tabela n.º 9 - Explorações agrícolas com mais de 50 % dos blocos sem acesso a uma via pública (por concelho)
Tabela n.º 10 - Explorações segundo a natureza jurídica do produtor e S.A.U. (por concelho)
Tabela n.º 11 - Explorações segundo a forma de exploração de S.A.U. e S.A.U. (por concelhos)
Tabela n.º 12 - População agrícola segundo o nível de instrução (por concelho)
Tabela n.º 13 - Culturas principais
Tabela n.º 14 - Culturas permanentes
Tabela n.º 15 - Pastagens permanentes
Tabela n.º 16 - Explorações de bovinos, suínos e equinos
Tabela n.º 17 - Explorações de coelhas reprodutoras, aves de capoeira, colmeias e cortiços
Tabela n.º 18 - Número de explorações e animais, por freguesia, no concelho de Castelo Branco (pequenos ruminantes)
Tabela n.º 19 - Número de explorações e animais, por freguesia, no concelho de Idanha-a-Nova (pequenos ruminantes)
Tabela n.º 20 - Número de explorações e animais, por freguesia, no concelho de Vila Velha de Rodão

Tabela n.º 21 - Codificação utilizada para definir a dinâmica dos focos num mapa temático

Tabela n.º 22 - Critério para a interpretação da variação de incidência “E”

Tabela n.º 23 - Codificação utilizada para produção de mapas temáticos sobre a variação da incidência “E”

Tabela n.º 24 - Codificação utilizada para a produção de mapas temáticos da variação do tempo despendido para extinguir os focos de brucelose

Tabela n.º 25 - Percentagem de rebanhos com limite inferior às quotas atribuídas por rebanho

Tabela n.º 26 - Evolução da prevalência aparente a nível animal

Tabela n.º 27 - Prevalência aparente a nível animal por concelho

Tabela n.º 28 - Prevalência aparente a nível animal por espécie animal

Tabela n.º 29 – Incidência de rebanhos positivos (concelho)

Tabela n.º 30 – Índice de Moran (1994 a 1999)

Tabela n.º 32 – Evolução do estatuto sanitário dos rebanhos com estatuto definido (B3 e B21)

Tabela n.º 33 – Evolução da classificação sanitária dos rebanhos com estatuto não definido (B1 e B22)

Tabela n.º 34 – Rebanhos com classificação sanitária B1 (desconhecido)

Tabela n.º 35 – Protocolo de aplicação dos testes serológicos e critérios de positividade aplicados a nível do animal

Tabela n.º 36 – Valores intrínsecos das provas serológicas

Tabela n.º 37 – Proporção esperada de rebanhos com resultados “falso-positivos”, com um teste de especificidade individual de 0,99, em função do tamanho do rebanho

Tabela n.º 38 – Parâmetros a considerar na interpretação dos resultados serológicos

Tabela n.º 39 – Aplicação prática do Rosa Bengala e Fixação do Complemento a um rebanho com 100 animais
Tabela n.° 40 - Anos de actividade como Produtor
Tabela n.° 41 - Principais actividades desenvolvidas pelos Produtores
Tabela n.° 42 - Área das explorações pecuárias de pequenos ruminantes
Tabela n.° 43 - Distância máxima entre as parcelas das explorações
Tabela n.° 44 - Estrutura dos rebanhos de pequenos ruminantes
Tabela n.° 45 - Número de ovelhas adultas por rebanho
Tabela n.° 46 - Número de carneiros por rebanho
Tabela n.° 47 - Número de cabras por rebanho
Tabela n.° 48 - Número de bodes por rebanho
Tabela n.° 49 - Distribuição mensal de partos
Tabela n.° 50 - Características gerais das explorações e ocorrência de brucelose
Tabela n.° 51 - Anos de actividade como Produtor e ocorrência de brucelose
Tabela n.° 52 - Destino dos soro do leite e ocorrência de brucelose
Tabela n.° 53 - Área da exploração e ocorrência de brucelose
Tabela n.° 54 - Incremento da área da exploração e ocorrência de brucelose
Tabela n.° 55 - Distância entre as parcelas das explorações e ocorrência de brucelose
Tabela n.° 56 - Factores ligados ao sistema de produção e às políticas de repovoamento e ocorrência de brucelose
Tabela n.° 57 - Tipos de cama e ocorrência de brucelose
Tabela n.° 58 - Tipo de rebanho e ocorrência de brucelose
Tabela n.° 59 - Número de ovelhas por rebanho e ocorrência de brucelose
Tabela n.° 60 - Dimensão do efectivo ovino e ocorrência de brucelose
Tabela n.° 61 - Número de carneiros por rebanho e ocorrência de brucelose
Tabela n.° 62 - Número de cabras por rebanho e ocorrência de brucelose
Tabela n.° 63 - Número de bodes por rebanho e ocorrência de brucelose
Tabela n.° 64 - Distribuição dos partos ao longo do ano e ocorrência de brucelose

XIII
Tabela n.º 65 - Maneio do parto e ocorrência de brucelose

Tabela n.º 66 - Patologia reprodutiva e ocorrência de brucelose

Tabela n.º 67 - Destino das secundinas e ocorrência de brucelose

Tabela n.º 68 - Maneio reprodutivo e ocorrência de brucelose

Tabela n.º 69 - Factores de risco relacionados com o Pastor e ocorrência de brucelose

Tabela n.º 70 - Presença de espécies animais domésticas e ocorrência de brucelose

Tabela n.º 71 - Presença de espécies silvestres e ocorrência de brucelose

Tabela n.º 72 - Factores relacionados com a compra de animais e a ocorrência de brucelose

Tabela n.º 73 - Venda de animais e ocorrência de brucelose

Tabela n.º 74 - Conhecimento das medidas de controlo de focos de brucelose e ocorrência da doença no rebanho

Tabela n.º 75 - Febre de Malta e ocorrência de brucelose animal

Tabela n.º 76 - Matrix de Correlação de Pearson (Anexo III)

Tabela n.º 77 - Factores estudados

Tabela n.º 78 - Factores de risco incluídos no modelo final

Tabela n.º 79 - Probabilidade de ocorrência de brucelose nas explorações

Índice de Gráficos

Gráfico n.º 2 - Distribuição dos casos de brucelose humana nos concelhos de Castelo Branco e Idanha-a-Nova (1994 - 1999)

Gráfico n.º 3 - Evolução do número de rebanhos intervencionados na área de acção da OPP - Ovibeira (1994 - 1999)

Gráfico n.º 4 - Evolução do número de animais intervencionados na área da acção da OPP - Ovibeira (1994 - 1999)
Gráfico n.º 5 - Distribuição dos rebanhos por espécie animal (1994 - 1999) 131
Gráfico n.º 6 – Número de animais por espécie animal (1994 - 1999) 132
Gráfico n.º 7 - Média de animais por espécie de rebanho (1994 - 1999) 132
Gráfico n.º 8 - Evolução da prevalência de rebanhos positivos (1994 - 1999) 141
Gráfico n.º 9 - Evolução da prevalência de rebanhos positivos a nível de concelho 141
Gráfico n.º 10 - Evolução da prevalência de rebanho a nível de concelho 142
Gráfico n.º 11 - Prevalência de rebanhos positivos, segundo a espécie animal 144
Gráfico n.º 12 - Prevalência a nível animal em função do tamanho de rebanho (1994 - 1999) 148
Gráfico n.º 13 - Incidência a de rebanhos positivos (1994 - 1999) 151
Gráfico n.º 14 - Evolução da classificação sanitária por ano (Final do ano) 160
Gráfico n.º 15 - Evolução da classificação sanitária por ano (Início do ano) 161
Gráfico n.º 17 - Percentagem de colheitas com serologia negativa em função do tamanho de rebanho (1994 - 1999) 181
Gráfico n.º 18 - Percentagem de rebanhos infectados (B21) em função do tamanho de rebanho (1994 - 1999) 182
Gráfico n.º 19 - Percentagem de rebanhos indemnes (B3) em função do tamanho de rebanho (1994 - 1999) 183
Gráfico n.º 20 - Proporção esperada de rebanhos indemnes com mais de 1% de reagentes, utilizando um teste com uma especificidade de 0,99 186
Gráfico n.º 21 - Distribuição das colheitas de sangue ao longo do ano (1994 - 1999) 226
Índice de Figuras

Figura n.º 1 - Área em estudo 32
Figura n.º 2 - Temperatura média diária do ar 35
Figura n.º 3 - Precipitação (Quantidade total) 35
Figura n.º 4 - Humidade do ar 36
Figura n.º 5 - Insolação 36
Figura n.º 6 - Evapotranspiração real (Quantidade de água devolvida à atmosfera) 37
Figura n.º 7 - Geada (Número de dias do ano) 38
Figura n.º 8 - Quantidade de água na rede hidrográfica 40
Figura n.º 9 - Capacidade de uso do solo 41
Figura n.º 10 – Região demarcada de queijos da Beira Baixa e Sub-Região Demarcada de Queijos de Castelo Branco 63
Figura n.º 11 – Queijo Amarelo e Queijo de Castelo Branco 64
Figura n.º 12 – Queijo Picante 65
Figura n.º 13 – Estrutura dos rebanhos, por concelho 134
Figura n.º 14 – Distribuição do número de rebanhos e de animais por freguesia 136
Figura n.º 15 - Número médio de animais por rebanho e por freguesia 137
Figura n.º 16 - Prevalência da brucelose de rebanhos positivos por freguesia 143
Figura n.º 17 - Prevalência da brucelose a nível animal por freguesia 147
Figura n.º 18 – Incidência de rebanhos positivos, por freguesia 153
Figura n.º 19 – Dinâmica da brucelose nos pequenos ruminantes, na área investigada 154
Figura n.º 20 - Variação da incidência de brucelose nos pequenos ruminantes, utilizando dois critérios diferentes (1998 e 1999) 155
Figura n.º 21 - Variação do tempo despendido para extinguir os surtos de doença de brucelose nos pequenos ruminantes (1996 - 1999 - OPP Ovibeira) 156

XVII
Figura n.º 22 - Número de rebanhos infectados observados por freguesia (1994 - 1999) 158

Figura n.º 23 - Análise espaço/temporal: Área que constitui o agregado de casos de doença mais provável (1994 - 1999) 158

Figura n.º 24 - Análise espacial: Área que constitui o agregado de casos de doença mais provável (1994 - 1999) 159

Figura n.º 26 - Evolução das classificação sanitária, por número de animais e por concelho 167

Figura n.º 27 – Evolução da classificação sanitária dos rebanhos por concelho 169

Figura n.º 28 – Percentagem anual de explorações com estatuto sanitário não definido, por freguesia 171

Figura n.º 29 – Evolução das explorações indemnes e infectadas, no início e no fim do ano, por freguesia 172
Índice de Abreviaturas e Símbolos

AAC - Reacção anti-complementar (Fixação do Complemento)
A.D.S. - Agrupamentos de Defesa Sanitária
Ani. - Animais
CLASS. - Classificação
CEE - Comunidade Económica Europeia
Conj. - conjuntival
DP - Desvio Padrão
D.R. - Detecção Remota
D.R.A.B.I - Direção Regional de Agricultura da Beira Interior
P.A.T. - Prova do antigénio tamponado
ELISA -
ESND - Estatuto Sanitário Não Definido (B22, B1, Sem classificação e Não Constam)
Explor. - explorações
F.C. - Fixação do Complemento
G.A.T.T. - General Agreement on Tariffs and Trade of the Uruguay Round
Hab. - Habitantes
ICOR - Intervalo de confiança do Odds Ratio
Ig - Imunoglobulinas
I.N.G.A. - Instituto Nacional de Garantia Agrícola
N.º - Número
NC - Explorações pecuárias que não constam da lista de classificação sanitária dos rebanhos (Oficial)
O.I.E. - Office International de Epizooties
O.M.C. - Organização Mundial do Comércio
O.M.S. - Organização Mundial de Saúde
O.P.P. - Organização de Produtores Pecuários
OR - Odds Ratio
P.A.C. - Política Agrícola Comum
P.I.S. - Programa Individual de Saneamento
P.I.S.A. - Programa Informático de Sanidade Animal
P.V. - Peso Vivo
R.B. - Rosa Bengala
SC – Explorações que contam da lista de classificação sanitária, mas sem classificação atribuída
s.c. – sub-cutânea
S/ - sem
S.A.U. - Superfície Agrícola Utilizável
S.I.G. – Sistema de Informação Geográfica
TR – Total de Rebanhos
UFC – Unidades Formadoras de Colónias
W.T.O - World Trade Organization
U.E. – União Europeia
≥ - aproximadamente
ρ - coeficiente de correlação intra-rebanho
χ² – Qui-Quadrado
CAPÍTULO 1

INTRODUÇÃO

A brucelose, doença transmissível causada por bactérias do gênero Brucella, é uma das principais antropozoonoses em Portugal, apesar dos esforços que desde os anos 50 têm sido feitos, para controlar e posteriormente erradicar a doença nas populações animais Nacionais.

Tal como em outros Países da bacia do Mediterrâneo, a infecção por Brucella melitensis afecta as populações de pequenos ruminantes, condicionando a produção de ovinos e de caprinos e de produtos derivados, como o leite e o queijo. Os pequenos ruminantes constituem uma importante fonte de rendimento para as populações rurais da Beira Baixa, e são, provavelmente, o maior contrapeso à desertificação que se observa há cinco décadas. Durante séculos, estas populações viveram quase isoladas, sobrevivendo do aproveitamento da terra e dos animais. Após a II Guerra Mundial, a industrialização acelerada da Europa, estimulou a fuga a uma vida de trabalho penosa no campo, parca em compensações, iniciando-se um processo de emigração que ainda hoje perdura. Desde 1950, a população da região diminuiu 39 %, registando-se actualmente uma densidade média de 46 Hab./Km², sendo a densidade média no concelho de Idanha-a-Nova, a mais baixa do país: 8,3 Hab./Km² (INE, 1999).

Em 1986, a entrada de Portugal na CEE implicou a adopção de políticas que visavam a diminuição da população ligada à agricultura. Os jovens, com um grau de escolaridade cada vez mais elevado, procuraram empregos mais rentáveis e menos desgastantes nas cidades, sobretudo nos grandes centros urbanos, ficando os idosos nas aldeias, constituindo hoje, cerca de 26 % da população da região. Estes, têm dado continuidade a uma tradição de criação de ovinos e caprinos, para produção de leite/queijo, que constitui a sua principal fonte de rendimento.
A P.A.C. destinou importantes verbas para financiar a modernização da agricultura, mas as exigências em relação à competitividade da produção, não foram assimiladas por uma população envelhecida, tradicionalmente resistente a mudanças nos processos de produção.

Os queijos da Beira Baixa, face ao reconhecimento pelos consumidores das suas qualidades, constituíram a esperança de quem teimou em permanecer na agricultura, nomeadamente de alguns jovens empresários agrícolas e de outros mais idosos. A necessidade de valorização do produto, conduziu a um processo de certificação dos queijos, e à adopção da regulamentação Comunitária referente à produção de queijos a partir de leite cru, limitando a produção aos rebanhos indemnes de brucelose.

Este facto torna-se relevante face à crescente consciencialização dos consumidores para a qualidade dos produtos de origem animal, sobretudo após a crise da “doença das vacas loucas”. O estatuto sanitário dos rebanhos em relação às doenças que podem afectar a Saúde Pública, é uma arma crucial para credibilizar os produtos de origem animal da região. Uma crise semelhante, a nível dos queijos produzidos a partir de leite cru de pequenos ruminantes, tão contestados pelos países nórdicos, teria consequências económicas e sociais desastrosas.

Por outro lado, as alterações na regulamentação sobre trocas comerciais internacionais originaram a necessidade de assegurar que um País ou região está livre de determinadas doenças. A World Trade Organization (W.T.O.) que tem a responsabilidade de implementar os vários acordos internacionais finalizados pelo G.A.T.T. (Uruguay Round of the General Agreement on Tariffs and Trade) iniciou a implementação desses acordos em Janeiro de 1995 e adoptou os códigos do Office International de Epizooties (O.I.E.) como guia do comércio internacional de animais e de produtos de origem animal. A componente nuclear destes guias, é o estabelecimento a nível nacional ou regional de zonas livres de doença com vista à exportação de animais e produtos alimentares de origem animal.

Muitos Países, como Portugal, têm desenvolvido esforços para erradicar doenças limitantes da exportação de animais e de produtos de origem animal como a

Apenas da imensa legislação aprovada e do financiamento destas ações por parte da União Europeia (U.E.), a brucelose dos pequenos ruminantes na região de intervenção da O.P.P. - Ovibéia (Associação de Produtores de Ovinos do Sul da Beira) não foi erradicada e os casos declarados de brucelose humana tem origem, invariavelmente, no contacto directo com animais e no consumo de produtos derivados, nomeadamente leite e queijo.

A prevalência e a incidência registadas a nível dos rebanhos, permite almejar a erradicação, embora os seus valores tenham permanecido estáveis nos anos 90, sobretudo a nível animal.

Por outro lado, produz-se diariamente uma grande quantidade de dados que antes de ser registada e analisada tem de ser validada para garantir a sua qualidade. Esta operação é fundamental para que a análise dos resultados não seja desvirtuada, e leve à implementação de medidas inadequadas. Por outro lado, o acesso e o fluxo de informação deve ser rápido e facilitado, por forma a que todos os actores possam acompanhar os resultados que vão sendo atingidos.

É crucial, analisar os factores que têm obstado a que a região abrangida pela O.P.P. - Ovibéia e que engloba os concelhos de Castelo Branco, Idanha-a-Nova e Vila Velha de Rodão, não seja ainda uma região indemne. Este estatuto, é fundamental para uma região onde o comércio e a indústria teimam em não vingar, onde a agricultura continua a ser uma das únicas saídas para os jovens, e a preservação dos queijos para além de factor económico relevante, representa também um legado cultural.

Assim, os objectivos do presente estudo são:

a) Avaliar as estratégias concebidas ao longo dos anos, assim como a sua aplicação e os resultados práticos;

b) Realizar uma análise aprofundada das possibilidades e problemas do sistema informativo do Plano de Erradicação no qual se inclui o P.I.S.A. (Programa
Informático de Sanidade Animal) de forma a permitir melhorar a qualidade dos dados e a eficácia da sua análise, e por isso, a qualidade da informação produzida, em especial a que se refere à avaliação epidemiológica;

c) Introduzir um Sistema de Informação Geográfico que permita uma análise espacial expedita dos dados produzidos;

d) Identificar o conjunto de factores de risco de ocorrência e/ou de manutenção da infecção brucelica, presentes nos sistemas de produção locais de pequenos ruminantes;

e) Avaliar a estratégia de utilização dos testes serológicos e contribuir para melhorar os critérios de diagnóstico e de análise dos resultados laboratoriais obtidos;

f) Avaliar o modelo de certificação do estatuto sanitário dos rebanhos e contribuir para o seu aperfeiçoamento, nomeadamente na manutenção do estatuto indemne dos rebanhos;

g) Contribuir para melhorar a segurança alimentar, dos queijos produzidos a partir de leite de pequenos ruminantes e desta forma aumentar a confiança dos consumidores.
CAPÍTULO 2

A BRUCELOSE

2.1 A brucelose animal

A brucelose é uma zoonose, de importância mundial, causada por bactérias do gênero *Brucella*, microrganismos Gram negativos, muito relacionadas entre si, do qual se conhecem seis espécies (Corbel e Brinley-Morgan, 1982), classificadas com base em testes diferenciais e pela preferência de hospedeiro natural, pelo Sub-Comité de Taxonomia da *Brucella*, do Comité Internacional da Nomenclatura Bacteriológica:

- *Brucella melitensis* (Hughes 1983) – Caprinos
- *Brucella abortus* (Semidt 1901) – Bovinos
- *Brucella suis* (Huddleson 1929) – Suínos
- *Brucella ovis* (Buddle 1956) - Ovinos
- *Brucella canis* (Carmichael and Brunner 1968) – Canídeos
- *Brucella neotomae* (Stoenner and Lactiman 1957) – Ratos do deserto

Para a identificação da *Brucella* utilizam-se vários testes que incluem a necessidade em CO₂, a produção de H₂S, sensibilidade aos corantes, actividade ureásica e reacções com soros mono-específicos (Corbel e Brinley-Morgan, 1982). A introdução de testes de sensibilidade à lise pelos fagos e de testes do metabolismo oxidativo, permitiu resolver alguns problemas de identificação das espécies, assim como uma sistematização das mesmas, consistente com as evidências epidemiológicas (Corbel et al., 1984).
Correntemente, os testes de sensibilidade à lise pelos fagos e de metabolismo oxidativo são utilizados como meios primários de identificação ao nível de espécie e os testes convencionais para a diferenciação dos vários biovares (Corbel e Brinley-Morgan, 1982).

A classificação adoptada, feita exclusivamente com base nos caracteres fenotípicos e na preferência de hospedeiro natural, apresenta um grau de subjetividade muito controverso (Verger e Graynon, 1991). Estudos recentes da Brucella, utilizando técnicas de clonagem e de sequência do genoma, nomeadamente através de técnicas de hibridação DNA-DNA, permitiram um conhecimento mais profundo da estrutura genómica da Brucella, revelando a sua homogeneidade e o grau de polimorfismo interno dos seus ácidos nucleicos (Grimont et al., 1992; Corbel, 1997; Gandara et al., 2001). Deste modo, tem sido considerada a possibilidade do gênero Brucella incluir uma única espécie genómica – Brucella melitensis – sendo as outras espécies consideradas para designar os diferentes biovares (Verger e Graynon, 1991).

Mais recentemente, após o isolamento de Brucella em mamíferos marinhos, em cetáceos, focas e lontras (Foster et al., 1996; Nielsen, 1996; Ross et al., 1996; Jahans et al., 1997), foi proposta uma nova espécie, Brucella maris, e utilizando os critérios para a definição de biovares, esta espécie englobaria 3 biovares.

2.1.1 Epidemiologia

A brucelose nos pequenos ruminantes é causada pela Brucella melitensis, e raramente pela Brucella abortus (Luchsinger e Anderson, 1979; Garin-Bastuji et al., 1994) ou pela Brucella suis (Paliocchi et al., 1993). Não há evidências de que os três biovares de Brucella melitensis defiram entre si em termos epidemiológicos e patogénicos. No entanto, a Brucella melitensis biovar 3 é a mais frequentemente isolada nos Países Mediterrâneos (MZCP, 1998).

A brucelose é uma doença com carácter zoonótico, disseminada por muitas regiões, especialmente nos Países do Mediterrâneo e do Médio Oriente, onde

A variabilidade observada nos resultados da infecção brucelica em diferentes efectivos de pequenos ruminantes, suporta a ideia de que a epidemiologia da brucelose está muito condicionada pelo rebanho, nomeadamente, práticas de maneio, raça, estado fisiológico e condições higio-sanitárias da exploração.

A suscetibilidade dos pequenos ruminantes a infecção brucelica depende de factores como a idade (jovens são mais resistentes), estado fisiológico (fêmeas gestantes mais suscetíveis), características genéticas (raças leiteiras mais suscetíveis), virulência do biovar, dose (a dose infectante D150 foi experimentalmente avaliada entre 1000 a 500000 organismos, em função dos múltiplos factores que influenciam a suscetibilidade) e a vacinação ou exposição prévia (Sales Henriques, 1990).

Tal como em relação à infecção brucelica nos bovinos por *Brucella abortus*, a *Brucella melitensis* pode ser transmitida verticalmente. Uma pequena proporção de fetos pode infectar-se no útero, mas a maior parte das crias infectam-se pela ingestão de colostrum e leite (Renoux, 1957; Grilló et al., 1997). Por outro lado, a presença de anticorpos no colostrum, protege os recém-nascidos face à infecção brucelica (Thoen e Enright, 1986).

É igualmente provável, que ocorra um mecanismo de cura espontânea, similar ao sugerido para os bovinos (Fensterbank, 1978; Grilló et al., 1997), que pode atingir até 80% dos animais infectados antes dos 6 meses de idade, nomeadamente nos ovinos de raças pouco suscetíveis, como por exemplo, os merinos (Sales Henriques, 1990). Também se constata, nomeadamente nos ovinos, a cura espontânea, ao fim de 1 ou 2 anos pós-infecção (Garniére, 1990).

No entanto, a existência de infecções latentes nos animais jovens, aumenta a dificuldade de erradicação da doença, permitindo a persistência da *Brucella melitensis* no rebanho sem ser detectada, sobretudo nos caprinos. Existe uma probabilidade de ≥ 5 % da infecção se manter, revelando-se apenas na primeira gestação (Grilló et al., 1997).
O aborto e o parto, são as maiores fontes de disseminação da infecção entre os animais de um rebanho, a outras espécies animais e ao Homem (Garin-Bastuji, 1993).

Na maior parte das infecções, a disseminação primária da bactéria é dirigida para a placenta, líquidos fetais e feto, sendo a *Brucella* eliminada pelas descargas vaginais, após o aborto ou o parto de termo. No caso dos bovinos, o número de bactérias atinge entre $2,4 \times 10^8$ a $4,3 \times 10^9$ g no cordão umbilical, $9,5 \times 10^{10}$/ml nos fluidos fetais e $5,2 \times 10^{11}$ a $1,4 \times 10^{13}$ por grama, nos cotiledones (Alexander *et al.*, 1981). Sem especificar a espécie animal e a espécie de *Brucella*, Plommet (1986a), refere que as descargas vaginais atingem uma concentração de 10^{12}/ml mas a excreção é limitada a 1 mês, após o parto ou o aborto.

A excreção vaginal, nos pequenos ruminantes, é mais copiosa e prolongada do que nos bovinos, podendo durar 2 a 3 meses nas cabras, cessando em 2 a 3 semanas, nos ovinos (Alton *et al.*, 1988). No caso da cabra, pode iniciar-se entre 6 a 7 semanas antes do parto e permanecer até 30 semanas após o parto, podendo ser concomitante com as secreções vaginais que se produzem durante o estro (Garniere, 1990).

A glândula mamária dos pequenos ruminantes, excreta a bactéria de forma contínua ou intermitente (Meador *et al.*, 1989). No leite, a concentração de bactérias é de 10^7/ml, com uma excreção prolongada. Assim, as zaragatoas vaginais e as amostras de leite constituem os meios ideais para o isolamento da bactéria (Alton, 1990).

Nos caprinos, cerca de dois terços das infecções agudas contraídas durante a gestação, conduzem à infecção da mama e à excreção da bactéria no leite, durante a lactação seguinte. A proporção de fêmeas infectadas que eliminam *Brucella* no leite é geralmente importante, e está correlacionada com a prevalência intra-rebanho. Alguns meses mais tarde, a percentagem de fêmeas que excretam a bactéria no leite diminui, podendo mesmo cessar durante a lactação ou persistir até ao final da lactação. A produção de leite é mais afectada do que nos bovinos. A quebra estimada nesta última espécie é ≈ 10 % (Philippon *et al.*, 1971; Alton, 1985). A infecção mamária pode persistir de uma lactação para a outra (Grilló *et al.*, 1999). Nas ovelhas, a excreção persiste, em média, 3 semanas (Alton, 1985).
A excreção através da urina é frequente na altura do parto ou do aborto, por contaminação a partir das secreções vaginais. Durante um período de cerca de 2 meses, as fêmeas que abortaram continuam a eliminar pela vagina quantidades reduzidas de bactérias. Esta eliminação ocorre também através da urina, por um período de 2 meses (Alton, 1985).

Os borregos e cabritos que ingerem colostro e leite infectado, podem desenvolver infecções nos linfonodos que drenam o tracto gastrointestinal e excretar a *Brucella* nas fezes (S.C.A.H.A.W., 2001).

No sangue, a *Brucella* está presente na fase de bactériémia, sendo discreta e fugaz na maioria das espécies animais, e mais importante nos períodos que se seguem ao aborto. Pode ser detectável entre 10 a 20 dias após a infecção e persistir durante 30 dias ou mesmo mais de 2 meses (S.C.A.H.A.W., 2001). A sua importância como fonte de infecção do Homem é relevante, particularmente durante as colheitas de sangue, as cesarianas e dos abates sanitários.

A eliminação da *Brucella* pode também ocorrer pelo sêmen. Esta forma de eliminação assume particular importância nos carneiros, e está associada, normalmente, a infecções por *Brucella ovis* (Grilló et al., 1999).

Diferenças de susceptibilidade entre raças de ovinos têm sido descritas, sendo as raças de aptidão leiteira mais susceptíveis do que as de aptidão para a produção de carne. Entre os caprinos, as diferentes raças são uniformemente susceptíveis à brucelose (Alton, 1985; Ribeiro et al., 1990).

A disseminação da brucelose entre animais, pode acontecer através da compra de animais, do contacto dos animais nas pastagens ou através de vectores mecânicos como a água, o pó ou o chorume, ou ainda por vectores vivos como o cão e/ou as espécies cinegéticas (Garin-Bastuji, 1993). Pela água, a disseminação da *Brucella* é rara e só é efectiva a curtas distâncias, pelo que o seu papel na epidemiologia da doença é secundário (Philippon et al., 1971; Plommet, 1972; Garin-Bastuji et al., 1998).

A infecção pode dar-se por via oral, através da ingestão de alimentos contaminados, ou pelo facto de os animais se lamberem, hábito comum no caso dos caprinos, que usam a língua e os dentes para se limparem; por via

Outra porta de entrada que tem sido implicada na infecção brucelícia é a conjuntiva, enquanto a importância da pele parece depender da existência de erosões ou feridas (Alton, 1987; Ribeiro et al., 1990).

A brucelose, causada pela Brucella melitensis nos ovinos e nos caprinos, transmite-se facilmente a outras espécies animais susceptíveis, como os bovinos, os suínos e ao Homem. Em regiões onde a brucelose nos pequenos ruminantes é endêmica, a promiscuidade entre espécies animais, inerentes a alguns sistemas de produção de pequenos ruminantes, como a transumante e a nómada, cria muitas vezes condições favoráveis à contaminação de outras espécies animais.

Em áreas onde a brucelose foi erradicada nas espécies domésticas, observou-se que a primeira fonte de infecção passou a ser as espécies cinegéticas infectadas (Garin-Bastuji, 1993; Rhyan, 2000; Ridler et al., 2000). Alguns casos humanos têm sido atribuídos ao contacto com espécies cinegéticas, reconhecendo-se que estas espécies são potenciais fontes de infecção de Brucella (Teyssou et al., 1989; FAO/OIE/OMS, 1999). Verifica-se também um aumento das áreas de pastagem e dos pontos de aperfeiçoamento partilhados pelas espécies domésticas e cinegéticas, com o incremento da caça associativa e a introdução de espécies animais exóticas.

A epidemiologia da infecção por Brucella ovis não é totalmente conhecida. Para a maioria dos Autores, as ovelhas não têm um papel importante na manutenção da Brucella ovis nos rebanhos. No entanto, não deve ser menosprezada a sua importância como fonte de infecção para os carneiros, e sobretudo para as crias.

Estudos experimentais (Grilló et al., 1997) revelaram que embora esta espécie de Brucella não revele grande capacidade para induzir aborto nas fêmeas infectadas, a maioria das ovelhas excreta a bactéria nos correntes vaginais, no colostro e no leite, constituindo uma fonte de infecção para os borregos, responsável pelo desenvolvimento de infecções latentes no rebanho, sem intervenção dos carneiros. A transmissão venérea desta bactéria tem sido descrita como rara e sem grande importância. No entanto, face à excreção persistente de Brucella ovis pelas ovelhas infectadas, não é de excluir a transmissão directa da Brucella ovis das ovelhas para os carneiros, durante a época de cobrição (Grilló et al., 1997).
Estudos recentes evidenciaram a presença de um grande número de brucelas no intestino e no útero de nemátodos pulmonares (*Parafilaroides* spp.) em focas infectadas (Rhyan, 2000), levantando a questão sobre o papel dos parasitas na epidemiologia da brucelose.

2.1.2 Viabilidade da *Brucella*

A capacidade da *Brucella* em sobreviver fora do hospedeiro é elevada, quando comparada com outras bactérias patogénicas não esporuladas. Num ambiente natural, a sua sobrevivência está dependente das condições de temperatura, humidade, luminosidade, ventilação, presença de matéria orgânica, pH e presença de outros microrganismos (Alton e Gulasekarem, 1974). São bactérias muito sensíveis ao calor, não sobrevivendo a temperaturas superiores a 60 °C, sendo necessárias temperaturas de 80 °C para garantir uma esterilização (Corbel e Brinley-Morgan, 1982). São igualmente muito sensíveis à acção directa da luz solar, podendo sobreviver 2 a 3 meses na obscuridade, e são resistentes à dissecação, se esta for progressiva. A temperaturas de refrigeração, em ambientes húmidos e na ausência de luz directa, as possibilidades de resistência aumentam (Ray, 1979).

Na pastagem, em função da época do ano, podem sobreviver até 250 dias, quando a coberto de vegetação.

Na água, não resistem mais de 8 dias se a temperatura for de 12 °C. Resistem mais tempo se a água estiver a uma temperatura de 25 °C ou 37 °C, e meses, se a temperatura variar entre os 4 °C e os 8 °C (S.C.A.H.A.W., 2001).

No estrume, podem sobreviver alguns meses; até 75 dias nas fezes húmidas; mas morrem rapidamente nas estrumeiras, como resultado do aumento de temperatura originado pelo processo de fermentação. No entanto, é possível encontrá-las na superfície das estrumeiras, onde o calor libertado é menor, mantendo-se viáveis por períodos alargados. No chorume, podem sobreviver 7 ou 8 meses, atingindo títulos bastante elevados, \(\approx 10^5/\text{ml} \), sobretudo após a ocorrência de abortos (Ray, 1979).
A Brucella não sobrevive durante muito tempo num queijo maturado. Tem sido descrita a sobrevivência da bactéria em vários tipos de queijos, feitos a partir de leite crú de várias espécies animais e com processos tecnológicos de transformação distintos (Styles, 1945; Davies e Casey, 1973; Plommet et al., 1988; Centeno et al., 1990; El-Daher et al., 1990; Acedo et al., 1997; Diáz et al., 1998). Face aos resultados obtidos, não é possível definir com exactidão um tempo óptimo para assegurar a inoquidade dos queijos, pelo que tem sido estimado em 3 meses (Nicoletti, 1989).

Em contraste com os produtos derivados do leite, o tempo de sobrevivência da Brucella na carne é extremamente curto, excepto nas carnes refrigeradas ou congeladas, onde o organismo pode sobreviver anos. O número de bactérias por grama de músculo é pequeno e diminui rapidamente com a fermentação ácida da carne (Anani et Gaumont, 1974; Fournaud, 1982; Winkler, 1982). Embora existam indicações sobre a possibilidade de contágio durante a manipulação das carcaças, não existe nenhum estudo epidemiológico ou experimental que demonstre que a infecção possa ser adquirida pelo consumo de carne.

A Brucella não resiste aos desinfectantes mais comuns, nomeadamente em suspensão aquosa nas concentrações recomendadas (fenol 19g/l, formaldeído 1ml/l). A presença de matéria orgânica ou as baixas temperaturas reduzem drasticamente a sua eficácia. Quando possível, a descontaminação deve ser feita com recurso ao calor, sobretudo ao nível das superfícies. As soluções de hipocloritos, etanol, isopropanol e iódóforos, são efectivas como anti-sépticos aplicados na pele contaminada, ao contrário dos compostos de amónio quaternário que não são recomendáveis (FAO/OMS, 1986; Alton et al., 1988).

2.1.3 Patogenia

O poder patogénico da Brucella está associado à sua virulência e ao seu poder tóxico. Trata-se de uma bactéria intracelular facultativa, capaz de se multiplicar no

Segundo Dubray et al. (1991) em função da porta de entrada da Brucella, os mecanismos de defesa imunitária podem diferir. Antes do estabelecimento de uma resposta imunitária específica, a bactéria confronta-se com as barreiras mecânicas de defesa constituídas pela pele e pelas mucosas. A ingestão da bactéria pelas células fagocitárias, após a invasão do hospedeiro, facilita a disseminação do microrganismo, protegendo-a ao mesmo tempo das actividades bactericidas desenvolvidas pelos anticorpos e pelo complemento.

A sobrevivência da Brucella no interior das células fagocitárias, parece resultar da inibição da actividade metabólica oxidativa da célula infectada, não sendo possível a actuação dos produtos do sistema enzimático antibacteriano da mieloperoxidase, impedindo-se desse modo, a destruição da bactéria (Thoen e Enright, 1986; Canning, 1989). A desgranulação e subsequente libertação dos lisossomas, é suprimida pela presença da bactéria, provavelmente devido à existência de 5-guanina-monofosfato e de adenina na superfície celular (Canning et al., 1985). No leite, a diminuição da actividade bactericida das células fagocitárias pode estar associada à presença de gordura e de caseína, que promovem a desgranulação e a depleção lisosomal dos neutrófilos (Meador et al., 1989).

Quer a resposta imunitária humoral, quer a resposta imunitária mediada por células, participam nos mecanismos de protecção do hospedeiro face à infecção, através do efeito combinado de ambas as respostas (Winter, 1989). No entanto, Sutherland (1980), realça o facto da resposta celular ocorrer concorrentemente com a resposta humoral, mas independente desta.

Os anticorpos não parecem desempenhar um papel relevante na defesa do organismo, apesar da acção estimulante que produzem sobre os macrófagos (Deyoe, 1972; Sutherland, 1980; Winter, 1989). A defesa imunitária específica,
resulta da acção de células timo-dependentes, os linfócitos T, capazes de produzir linfoquinas que estimulam os macrófagos na sua acção fagocitária e de destruição bacteriana (Smith III, 1989; Winter, 1989; Dubray et al., 1991; WHO, 1997a). Kaneene et al. (1978) encontraram uma grande correlação entre o isolamento de Brucella nos tecidos e a resposta imunitária mediada por células, correlação que não se observava em relação ao título de anticorpos do soro. Segundo Dubray et al. (1991), o sistema complemento pode inactivar a Brucella, na sua fase extracelular de infecção.

Assim, após invadir um hospedeiro susceptível, a Brucella é transportada por células fagocitárias ou circula livremente até aos linfonodos regionais, associados com a porta de entrada, onde ocorre uma reacção local com hipertrofia ganglionar (McEntee, 1970).

Se o microrganismo não se confinar aos linfonodos, a sua disseminação a outros órgãos ocorre por via sanguínea ou linfática, cerca de 60 a 90 dias após a infecção, observando-se uma fase de bacteriémia transitória, que persiste em média 5 semanas, geralmente de forma contínua (McEntee, 1970).

Nos ruminantes, a Brucella tem afinidade para os órgãos linfóides e reprodutivos. A bactéria multiplica-se em grande número no útero grávido, na glândula mamária e nos linfonodos da região inguinal e da cabeça (Alton et al., 1988). Nas fêmeas não gestantes, a glândula mamária e os linfonodos retromamários são as localizações preferenciais (Ribeiro et al., 1990; Meador and Deyoe, 1991; Grilló et al., 1997). A susceptibilidade da mama à infecção depende da fase de lactação. A excreção de Brucella no leite pode ocorrer durante toda a lactação, mas é mais frequente no colostro e na fase final da lactação. O aumento da excreção está associado ao fluxo de leite, quer devido a uma maior concentração de bactérias em pequenas quantidades de leite ou pelo aumento da replicação das bactérias na glândula mamária (Meador and Deyoe, 1991).

O tecido mamário em lactação é menos susceptível às bactérias patogénicas que invadem o canal do teto, aparentemente devido à remoção física desses agentes pelo leite durante a ordenha. A Brucella atinge a glândula mamária através da circulação sanguínea, localiza-se sobretudo nos macrófagos e em menor quantidade nos neutrófilos. A estase do leite no lumen, ductos e alvéolos, devido a
suspensão da ordenha, aumenta a susceptibilidade à infecção. A influência hormonal e a imunocompetência dos leucócitos libertados na mama não interferem nas diferenças de susceptibilidade observadas durante a lactação e nos períodos de menor produção ou mesmo de secagem (Meador and Deyoe, 1991).

2.1.4 Síntomatologia

A expressão clínica da brucelose animal, não é constante e a infecção pode permanecer inaparente. A evolução da doença é caracterizada por um longo período de latência, quase sempre assintomática, dependendo do nível de contaminação, da idade e do estado fisiológico do animal, podendo variar de poucos dias a alguns meses, ou mesmo anos (Plommet, 1986a). Esta variabilidade, associada à susceptibilidade, constitui um dos aspectos mais problemáticos da relação hospedeiro/parasita no contexto dos programas de controlo e de erradicação da brucelose. Em rebanhos mistos, pode observar-se sintomatologia nos caprinos sem qualquer manifestação clínica nos ovinos (Plommet, 1986b).

Os aspectos clínicos e epidemiológicos da brucelose caprina e ovina são, assim, encontrados na forma latente ou abortiva, afectando sobretudo animais adultos (Karvounaris, 1976).

A forma abortiva revela-se por abortos, cuja frequência depende principalmente da estrutura do efectivo, sobretudo quando está implicada a Brucella melitensis. Abortos devido a Brucella abortus são raros nos pequenos ruminantes (Meyer, 1964). A Brucella ovis foi identificada como responsável por abortos nas ovelhas (McFarlane et al., 1952).

No período de gestação, a evolução da infecção depende do momento em que a mesma se produziu e do “inoculum” infectante (Alton, 1990). Cabras infectadas experimentalmente, no meio da gestação, podem abortar no último terço da gestação, enquanto que se a infecção ocorrer na fase final da gestação ou no início da mesma, é muito provável que não ocorra aborto (Meador et al., 1988).
As fêmeas nascidas em meios infectados abortam, em geral, menos que as outras. Isto explica a elevada frequência de abortos nos rebanhos indemnes (40 a 90 %) e rara nos rebanhos onde a brucelose evolui de forma endémica (Hutyra et al., 1986; Garín-Bastuji, 1993).

O mais frequente é que as ovelhas infectadas não repitam o aborto nas gestações seguintes, embora muitas mantenham a infecção, que se reactiva com a gestação, gerando crias débeis, que podem estar na origem de altas taxas de mortalidade perinatal (Redel, 1989). Muitas crias infectadas ao nascer, abortam em adultas, mesmo tendo permanecido em ambientes livres de brucelose.

As metrites são observadas em baixa percentagem, entre 10 a 25 % (Sales Henriques, 1990), podendo ser mais evidentes em rebanhos com prevalências baixas.

A forma latente acompanha-se de manifestações crónicas, na maior parte das situações sem manifestações clínicas. São detectadas apenas pelos testes serológicos, constituindo deste modo uma ameaça para os animais sãos da exploração e para as populações rurais.

A infecção em ovelhas não gestantes assume quase sempre a forma crónica, estabelecendo-se ao nível do sistema reticulo-endotelial, originando portadores inaparentes ou infecções latentes, complicando com frequência, o diagnóstico.

Nos machos, a infecção localiza-se frequentemente no aparelho genital, podendo a Brucella estar presente no sêmen (Garin-Bastuji, 1993). Podem observar-se orquídes e epididimites. As artrites são ocasionais. Estes animais, no estado adulto, são particularmente sensíveis à Brucella ovis.

2.1.5 Lesões

As lesões provocadas pela Brucella melitensis, nos pequenos ruminantes, estão muitas vezes ausentes ou são muito discretas, não apresentando características específicas.
Podem observar-se lesões de mastite, hiperplasia linfóide dos linfonodos e do baço, e endometrite. Predominam as células de natureza inflamatória, nomeadamente macrófagos, linfócitos, plasmócitos, e em menor número, neutrófilos e eosinófilos (Meador et al., 1988).

No útero grávido, a Brucella implanta-se e multiplica-se no espaço útero-corial, causando uma placentite exsudativa e necrótica, que leva ao descolamento útero-corial e ao aparecimento de aderências fibrosas entre o útero e a placenta. Nesta última, observa-se um edema severo das membranas corioalantóicas, um exsudado opaco e acastanhado à volta dos placentomas.

A necrose da placenta interfere com a passagem dos nutrientes do sangue materno para o fetal, sobretudo a partir do meio da gestação, as bactérias podem atingir o saco amniótico e ser ingeridas pelo feto, disseminando-se neste por todos os tecidos.

Nos fetos, as lesões pulmonares são as mais evidentes. Podem observar-se infiltrados ao nível do tecido intersticial do parênquima pulmonar, exsudados no lumen alveolar e nos bronquíolos. As cavidades, peritoneal e pleural, apresentam edemas extensos serofibrinosos. O baço e o fígado podem estar hipertrofiados e com hemorragias nas superfícies serosas. As células gigantes multinucleadas que se observam nos bovinos, não são encontradas nos caprinos.

Na glândula mamária, as lesões reflectem uma mastite intersticial, com a presença de exsudado povoado por células fagocitárias, a nível lobular e peri-ductal.

Sobretudo em animais com brucelose crónica, observam-se lesões extra-genitais, como artrites e bursites. Nos machos, a sua localização preferencial nos órgãos genitais pode originar orquites e epididimites (Garin-Bastuji, 1993).

2.1.6 Diagnóstico

O diagnóstico da brucelose é feito essencialmente através da cultura bacteriológica e da serologia, uma vez que o diagnóstico clínico é pouco ou nada conclusivo.
O isolamento bacteriológico é indispensável para a identificação do agente, para a definição da espécie e biovar implicados na infecção, permitindo uma avaliação precisa do estatuto sanitário dos efectivos de uma determinada região.

O isolamento bacteriológico da Brucella torna o diagnóstico irrefutável (Alton et al., 1988). Pode ser feito pelo exame microscópico de culturas obtidas a partir de zaragatoas vaginais, placentas ou fetos abortados, com a coloração de Stamp modificada do método Ziehl-Nielsen. No entanto, morfológicamente a Brucella melitensis pode ser confundida com outros micorganismos como a Brucella ovis, a Chlamydia psittaci ou a Coxiella burnetti, levando a um diagnóstico errado.

A Brucella melitensis não requer CO₂ para o crescimento e pode ser isolada em meios normais, como em Agar Sangue ou Agar Trypticase Soja, incubados a 37 °C, sob condições aeróbias. No entanto, recomenda-se um meio selectivo, face ao potencial crescimento de contaminantes, como o Meio de Farrell (Alton et al., 1988). No entanto, o ácido nalidíxico e a bacitracina presentes nesse meio, podem inibir o crescimento da Brucella melitensis. Marín et al. (1996) recomendam o uso simultâneo dos meios de Farrel e o modificado de Thayer-Martin. Uma vez isolada a bactéria, esta é identificada com base na morfologia da colónia, coloração Gram, aglutinação com soros específicos e reacções de oxidase e urease. Para a distinguir das outras espécies lisas de Brucella e classificar os biovares, faz-se uma tipificação com fagos e a aglutinação com soros monoespecíficos A e M.

No entanto, a sua utilização como método de rotina é inviável, uma vez que obriga à colheita de um grande número de órgãos, exige muito material, é muito moroso e nem sempre é bem sucedido, não garantindo a ausência de infecção, se não houver isolamento.

A cultura é um método específico, e a sua sensibilidade, entre 50 a 90 % (S.C.A.H.A.W., 2001), depende da viabilidade da Brucella na amostra, no tipo de amostra (orgãos e membranas fetais, linfonodos, etc.) e o número de amostras recolhidas do mesmo animal. O tempo requerido para a cultura pode ser longo e os tecidos ou fluidos podem estar contaminados com um baixo número de bactérias, que podem não ser detectadas.
Por outro lado, a obtenção de material a partir de animais vivos, nem sempre é possível, o que limita a sua utilização, quase exclusivamente, a animais mortos.

Deste modo, recorre-se preferencialmente ao diagnóstico serológico, sobretudo nas campanhas de controlo e de erradicação, em que o número de animais a testar é muito grande e onde é crucial uma resposta rápida e atempada.

Durante as últimas décadas foram realizados numerosos estudos sobre os antigénios brucélicos, com ênfase para a selecção de componentes antigénicos que permitam melhorar o diagnóstico serológico, particularmente na espécie bovina.

Embora um grande número de testes serológicos tenha sido desenvolvido para o diagnóstico da brucelose, nenhum parece ser o ideal, fácil e rápido de executar, de baixo custo, possível de ser utilizado em grande escala, capaz de detectar animais infectados em vários estados de evolução da doença, incluindo os portadores latentes e os portadores crónicos, e que simultaneamente, possa distinguir animais infectados naturalmente de animais vacinados.

Não há acordo científico sob qual a natureza e as características de um antigénio para o diagnóstico de espécies lisas de *Brucella (melitensis, abortus e suis)*. Um dos pontos mais controversos diz respeito ao diagnóstico da infecção por *Brucella melitensis* em pequenos ruminantes, nomeadamente que espécies de *Brucella* e biovares utilizar na produção de antigénios para o diagnóstico serológico. Os testes de diagnóstico desenvolvidos para bovinos, têm sido aplicados em pequenos ruminantes com piores resultados. Muitas vezes não conseguem identificar animais infectados, em particular, caprinos (Kolar, 1984).

O envelope da *Brucella* é composto por uma membrana citoplasmática interna, envolvida por uma camada de peptideoglicano associada à membrana externa. Segundo Sowa (1989), a sobrevivência da bactéria depende da integridade da parede celular que, uma vez alterada, é facilmente destruída. Assim, a actividade humoral é essencialmente dirigida para os antigénios da superfície celular.

Foram identificados na superfície celular da bactéria, um complexo lipopolissacárido (LPS) e dois polissacáridos: o hapteno nativo (HN) e o polissacárido B (poly B), assim como, pelo menos, mais de vinte proteínas ou complexos proteicos envolvidos nas reacções antigénio-anticorpo (FAO/OMS, 1986).
O complexo LPS, constitui o maior antígeno detectável pelos testes clássicos, o Rosa Bengala e a Fixação do Complemento e muitos dos testes ELISA (Alton et al., 1988). O LPS é constituído basicamente por um fosfolípido, pelo lípido A e por uma cadeia polissacárida específica (Cadeia-O). O fosfolípido encontra-se na extremidade proximal da membrana externa, enquanto na extremidade distal se encontra o lípido A ligado, via 2-Ceto-3-deoxioctonato, à cadeia polissacarídica por um núcleo oligossacárido (Sowa, 1989; Corbel, 1997). A cadeia-O polissacarídica é quimicamente constituída por um homopolímero N-formil-D-perosamina com ligações α-1,2 e α-1,3 (Chesrownogrodzky et al., 1990).

A cadeia polissacárida faz saliência na membrana da célula bacteriana e tende a ser específica, parecendo ser responsável pelo desenvolvimento da resposta imune específica. Dois determinantes antígenicos foram identificados nesta cadeia, nas espécies de Brucella de colónia lisa: o determinante A expresso na Brucella abortus e o determinante M expresso na Brucella melitensis (Bundle et al., 1987). Estes determinantes expressam-se de forma quantitativamente diferente nas várias espécies de Brucella de colónia lisa (Dubray e Limet, 1987).

A cadeia-O polissacárida da Brucella abortus biovar 1, contém uma estrutura com baixa frequência de ligações α-1,3 ligadas a resíduos de 4,6-dideoxi-4-formamido-D-mano- piranos. A Brucella melitensis biovar 1, por sua vez, contém unidades repetidas de pentassacáridos com uma ligação α-1,3 para quatro de α-1,2 (Bundle et al., 1987). Assim, as características antígenicas dependem da cadeia-O polissacárida, onde varia a frequência de ligações α-1,3 (Corbel, 1985; Bundle et al., 1987; Chesrownogrodzky et al., 1990). A quantidade de ligações α-1,3 foi calculada em 2% na Brucella abortus 1119-3 e 21% na Brucella melitensis 16 M (Mickle et al., 1989). A estrutura descrita é compatível com a seleção de um antígeno A-dominante para o diagnóstico da brucelose nos pequenos ruminantes, porque a resposta imunológica parece ser dirigida contra os açúcares com ligações α-1,3 e α-1,2.

Assim, as diferenças antígenicas são limitadas entre as espécies do gênero Brucella, o que torna possível a utilização de soros monoespecíficos anti-A e anti-M na identificação dos diferentes biovares. Da mesma forma, a preparação de antígenos pode ser feita a partir de qualquer das bactérias de colónia lisa, embora
se utilize normalmente nos testes serológicos, antígenos preparados a partir de células de Brucella abortus (Alton et al., 1988).

No entanto, estudos com anticorpos monoclonais e policlonais (Moreno et al., 1987; MacMillan, 1990) revelaram que os antígenos A e M não estão simultaneamente presentes na cadeia-O polissacárida, de Brucella abortus e Brucella melitensis, biovar 1, contrariando a hipótese de que diferenças quantitativas na distribuição de antígenos A e M, explicariam as reações cruzadas entre os diferentes biovarres lisos de Brucella. Revelaram a presença de um epitópio C, comum aos dois biovarres referidos e à Yersinia enterocolitica 0:9, e que, quando existe um epitópio C, um verdadeiro epitópio A não é encontrado em polissacáridos M-dominantes. Estudos efectuados por Díaz-Aparicio et al. (1993) em ovinos e caprinos, obtiveram uma maior eficiência com a Brucella melitensis 16M NH (M-C) na deteção de animais infectados com Brucella melitensis biovar 1 (M-C), do que os polissacáridos obtidos de Brucella abortus 2308 e de Yersinia enterocolitica 0:9 (A-C). Deste modo, pelo menos em animais infectados naturalmente, o epitópio C tem uma importância semelhante à dos epitópios A e M, podendo ser relevante em relação à sensibilidade dos antígenos feitos a partir de espécies A-dominantes (Brucella abortus biovar 1) na deteção de Brucella melitensis biovar 1 (M-dominante) e vice-versa.

Nas colónias de Brucella na fase rugosa, foi evidenciado um determinante antígenico R ao nível da cadeia LPS-R, no lugar dos determinantes A e M da cadeia LPS-L, pelo que os antígenos preparados para o diagnóstico serológico das espécies de colónia lisa, não podem ser utilizados no diagnóstico serológico das espécies de colónia rugosa (Alton et al., 1988).

As diferenças entre os testes clássicos utilizados no diagnóstico serológico da brucelose, estão basicamente ligadas à deteção dos anticorpos maiores, associados às imunoglobulinas séricas (Wright and Nielsen, 1990).

Registaram-se diferenças de propriedades entre as classes de Ig detectadas, assim como o seu grau de participação, dependendo da espécie animal e do estado de evolução da doença, tornando-se difícil extrapolar de uma espécie para outra (Jones e Hunt, 1983).
As IgM são detectáveis no soro em primeiro lugar, embora as IgG surjam rapidamente, com predominância das IgG₁ sobre as IgG₂, estes muito variáveis (Sutherland, 1980), aumentando com a idade do animal e no pós-parto. Este aumento está relacionado com a passagem de grandes quantidades de IgG₁ para o colostr (Ganiere, 1990). A flutuação que se observa na concentração sérica de IgG₂, torna por vezes a sua detecção impossível pelos testes clássicos, embora de forma transitória.

A presença de IgM, no soro a testar, indica geralmente uma infecção recente, mas a presença de IgG pode reflectir a exposição a um antígeno no passado. A concentração de IgM tende a diminuir progressivamente, pelo que num estado avançado da doença, a principal Ig detectada é a IgG (Sutherland, 1980).

De um modo geral, os testes clássicos apresentam um limite inferior de detecção de anticorpos muito alto. A especificidade e a sensibilidade dos testes são limitados, pelo facto de detectarem com maior facilidade as IgM, de menor especificidade antigénica. Nalgumas ocasiões, não é detectada nenhuma resposta humoral ou são detectadas respostas inespecíficas, confundindo a interpretação dos resultados. Estas situações são atribuídas a reacções cruzadas entre as espécies de *Brucella* de colónia lisa e outras bactérias com estrutura antigénica similar.

Esta reacção antigénica é atribuída ao complexo LPS-L, a nível dos derivados N-acil das unidades da 4-amino-4,6 dideoxi-D-manolípido da cadeia polissacarídica, comum às bactérias envolvidas neste tipo de reacção.

Entre as bactérias mais responsáveis por reacções cruzadas com a *Brucella* estão a *Yersinia enterocolitica* 0:9, a *Francisella tularensis* e a *Pseudomonas maltophilia* (Mittal and Tizard, 1981; Corbel, 1985). Muitas outras bactérias têm sido implicadas neste tipo de reacções, por vezes limitadas a algumas espécies ou mesmo a determinados biovaras. Na maioria dos casos, o estudo deste tipo de reacções tem sido feito experimentalmente, não se conhecendo o seu comportamento numa infecção natural.

Nenhum teste serológico foi desenvolvido para a detecção da *Brucella melitensis* nos pequenos ruminantes e tem sido assumido que os testes utilizados no diagnóstico da infecção dos bovinos por *Brucella abortus*, são adequados para o diagnóstico da *Brucella melitensis* em pequenos ruminantes. Desta forma, os
testes do Rosa Bengala e a Fixação do Complemento tem sido os mais adoptados pelos programas de controlo e de erradicação da brucelose dos pequenos ruminantes.

O Rosa Bengala tem sido considerado um bom teste no diagnóstico da brucelose animal, dada a sua simplicidade de execução, o baixo custo e o facto de poder ser utilizado em larga escala. É internacionalmente recomendado como teste de rastreio nos pequenos ruminantes (FAO/OMS, 1986; Garin-Bastuji e Blasco, 1997).

Um dos problemas que afecta a sensibilidade deste teste diz respeito à padronização do antigénio. O antigénio utilizado neste teste, é uma suspensão de células de Brucella abortus a 8 %, corada pelo Rosa Bengala, e tamponado a pH 3,65 ± 0,05, capaz de aglutinar a uma diluição de 1:47,5 (21 UI/ml) do soro anti-B. abortus padronizado internacionalmente (IsaBS) mas que dá uma reacção negativa à diluição de 1:55 (18,2 UI/ml) do mesmo soro.

A sensibilidade das reacções serológicas é, igualmente, influenciada pela temperatura a que são verificadas, pelo que o reagente a utilizar no teste de Rosa Bengala deve estar à temperatura ambiente antes de ser utilizado, cerca dos 22 ºC. As condições de padronização, que parecem servir o diagnóstico da infecção por Brucella abortus em bovinos (MacMillan, 1990) não parecem adequadas para o diagnóstico da infecção por Brucella melitensis em pequenos ruminantes (Blasco et al., 1994 a, b). Os antigénios são usualmente preparados com espécies A dominantes, pelo que as infecções com Brucella melitensis biovar 1 podem não ser detectadas. Entre 12 a 23 % dos ovinos e caprinos infectados não são identificados pelas provas serológicas da Fixação do Complemento e do Rosa Bengala (Kolar, 1984), e apenas 70 % dos animais infectados são detectados quando os testes são utilizados individualmente (Nicolletti, 1969). É provável que alguns dos animais não estivessem efectivamente infectados, ou que o limiar de detecção das provas seja demasiado elevado (Jacques et al., 1998). Comparando ambas as provas, o Rosa Bengala demonstrou maior capacidade em detectar ovinos infectados experimentalmente com doses convencionais (5x10⁷ CFU), com uma sensibilidade de 87,2 %, contra apenas 65,3 % da Fixação do Complemento,
enquanto que não foi demonstrado diferenças significativas quando infectados com doses menores.

Deve ser tido em conta, a baixa sensibilidade que têm alguns antigênicos Rosa Bengala comerciais no diagnóstico da brucelose em pequenos ruminantes (Blasco et al., 1994a), assim como a alta proporção de ovinos e caprinos mantidos em áreas infectadas com *Brucella melitensis* que reagem negativamente no teste do Rosa Bengala e positivamente na Fixação do Complemento (Brinley Morgan et al., 1969; Blasco et al., 1994a). Este fenômeno questiona seriamente a eficácia do uso do RB como teste individual em pequenos ruminantes. Pelo menos para os ovinos, a sensibilidade do teste do Rosa Bengala melhora significativamente quando os antigênicos são padronizados contra um painel de soros de várias culturas positivas de *Brucella melitensis* e de ovinos livres de *Brucella* (Blasco et al., 1994a).

Por outro lado, o Rosa Bengala detecta melhor as IgM do que a Fixação do complemento, pelo que revela experimentalmente uma melhor capacidade para detectar infecções precoces (Jacques et al., 1998).

Um outro inconveniente associado ao Rosa Bengala diz respeito à utilização da vacina *Rev.1*, que induz uma resposta serológica de longa duração (WHO, 1997a). O teste da Fixação do Complemento é considerado, segundo Alton et al. (1988), como muito sensível e o mais específico no diagnóstico da brucelose animal, e tem sido utilizado como teste de confirmação da brucelose nos animais.

De acordo com os trabalhos de Allan et al. (1976), as IgM fixam melhor o complemento que as IgG1, enquanto as IgG2, que não fixam o complemento, podem ser responsáveis por fenómenos de prozona nesta prova. No entanto, durante a inactivação do complemento residual do soro, as IgM são inactivadas pelo calor, sendo apenas detectáveis as IgG1.

É um teste útil para diferenciar as reacções de origem vacinal das infecções naturais. Os títulos nesta prova não tendem a diminuir quando a doença evolui para a cronicidade, embora também ocorram reacções inespecíficas. Têm-se verificado falhas na detecção de portadores latentes e no período que se segue ao aborto ou o parto natural (Nunn, 1981).
É uma técnica laboriosa e depende de produtos biológicos que limitam a sua utilização como teste de rotina. A proporção dos reagentes (complemento, hemolisina, glóbulos vermelhos e diluente) deve ser cuidadosamente balanceada para se obterem resultados credíveis. Deve ser determinado se o antígeno a utilizar ou o soro-teste são capazes de destruir o complemento, dando origem a reacções anticomplementares (AAC). Se o soro estiver hemolisado, pode haver dificuldade na interpretação dos resultados (Morris, 1982). A positividade do soro é verificável pela ausência de hemólise no soro teste, dependendo da presença ou não do complemento no soro.

Apesar do que foi dito, os vários Autores apresentam uma grande variabilidade de resultados, no que respeita à sensibilidade e à especificidade dos testes clássicos que se utilizam nas campanhas de controlo e erradicação da brucelose nos pequenos ruminantes (Tabela n.º 1 – Anexo I).

Devido aos problemas associados às provas convencionais, é imperativo que a interpretação dos resultados não seja feita individualmente, mas a nível de rebanho. Um animal não deve ser reconhecido como indemne ou infectado, sem conhecimento prévio do estatuto sanitário do rebanho. A utilização de vários testes aumenta a confiança dos resultados, e a sequência dos testes no tempo permite uma interpretação mais correcta.

2.1.7 Métodos de controlo e de erradicação

As estratégias para a prevenção e controlo da brucelose nos pequenos ruminantes são baseadas no conhecimento da patogenia e da epidemiologia da infecção. As medidas a tomar devem considerar a sobrevivência da _Brucella melitensis_ no meio ambiente. Os programas de controlo não devem ser aplicados a animais individualmente, mas ao rebanho no seu todo. O sistema de vigilância deve ser montado com o objectivo de identificar rebanhos livres, a partir dos quais as substituições de animais reprodutores devem ser feitas.
Em geral, a luta contra a brucelose confronta-se com grandes dificuldades na ausência de um método que permita formar rapidamente uma opinião objectiva sobre a situação epidemiológica numa exploração infectada, podendo a infecção disseminar-se antes de se tomarem decisões e implementarem estratégias no “terreno”.

A maioria dos programas sanitários baseia-se na testagem e no abate dos animais serologicamente positivos. Esta estratégia justifica-se economicamente, quando a prevalência da infecção a nível de rebanho é igual ou inferior a 1 % (S.C.A.H.A.W., 2001). Todos os animais susceptíveis devem ser identificados de forma permanente, assim como todos os seus movimentos devem ser controlados. Alguns programas de erradicação também adoptaram a notificação da ocorrência de abortos. Quando há testes positivos ou abortos, são tomadas medidas que passam pelo abate das fêmeas que abortaram. Em áreas livres, o abate total do rebanho é preconizado. A reposição do rebanho não é imediata, permanecendo a exploração, instalações e pastagens em vacio sanitário durante 2 a 3 meses.

O recurso a programas vacinais, nomeadamente à aplicação da vacina viva de *Brucella melitensis* Rev.1, permitiu diminuir a prevalência da doença nos pequenos ruminantes, em muitos países, sobretudo como reflexo de uma diminuição da disseminação da bactéria (Plommet, 1992; WHO, 1997a). Quando a prevalência diminui, torna-se necessário a aplicação de medidas mais eficientes de controlo, que podem basear-se na implementação de programas baseados na vacinação de animais juvenis com Rev.1 e na testagem e no abate dos animais adultos. Numa fase final, deve aplicar-se apenas a testagem e o abate de animais. Estas medidas requerem uma identificação exaustiva de animais e efectivos e o controlo do movimento animal. Requerem, igualmente, uma capacidade económica suficiente para os programas poderem ser implementados e ajustados até se chegar à erradicação da doença.

Um problema associado à aplicação da vacina, é o facto da estirpe *Brucella melitensis* Rev.1 induzir uma resposta serológica de longa duração contra o lipopolissacárido liso (LPS-L) tornando difícil a diferenciação entre animais infectados e animais vacinados. A Fixação do Complemento tem sido o teste descrito como capaz de fazer esta diferenciação (Alton et al., 1988).
Quando a vacina é administrada pelo método padronizados (1-2x10⁹ CFU, injectado por via sub-cutânea), induz uma resposta serológica de longa duração (Fensterbank et al., 1985), não sendo possível a distinção entre animais infectados naturalmente e vacinados (Debbarth et al., 1995). Em contraste, quando a vacina é administrada pela via conjuntival, a imunidade conferida é similar à induzida pelo método padronizado, mas com uma resposta serológica significativamente reduzida (Fensterbank et al., 1985), ficando a infecção limitada aos linfonodos da cabeça (Fensterbank et al., 1982). No entanto, embora a maioria das ovelhas vacinadas pela via conjuntival percam os seus anticorpos anti-Brucella, em 6 a 10 meses, nalgumas os anticorpos persistem durante períodos mais longos, interferindo com o diagnóstico serológico (Debbarth et al., 1995).

A vacinação exclusiva de animais jovens para o controlo da doença em alguns Países falhou (WHO, 1997a), e em muitos outros não é utilizada. Como resultado, a vacinação em massa de todos os animais do efectivo tem sido considerada como uma medida alternativa para o controlo da Brucella melitensis nos pequenos ruminantes em condições de produção extensiva.

O recurso às doses de Rev.1 utilizadas na vacinação de jovens tem demonstrado ser suficiente para produzir aborto nas fêmeas gestantes (Zundel et al., 1992, Blasco, 1997). A redução da dose vacinal tem sido sugerida como um método alternativo que evita este problema, sendo considerado como seguro e efectivo no controlo da brucelose, nos pequenos ruminantes (Elberg, 1981). No entanto, os resultados experimentais suportam o facto de que devido à indução de abortos em fêmeas gestantes e ao baixo grau de imunidade conferida, e às discrepâncias observadas em relação aos resultados obtidos em ensaios de vacinação em massa em diferentes Países, as doses reduzidas de Rev.1 não devem ser recomendadas como alternativa (Zundel et al., 1992; Blasco, 1997). A via conjuntival parece ser mais segura que a via sub-cutânea, mas não suficientemente segura para ser aplicada em fêmeas gestantes, devendo ser utilizada apenas sob condições restritas (Jiménez de Bagüés et al., 1989; Zundel et al., 1992). Para os ovinos é recomendada a vacinação por via conjuntival das doses padronizadas de Rev 1, numa fase tardia da época de parições ou durante a lactação, vacinando-se todo o efectivo (Blasco, 1997).
No entanto, em qualquer das fases de controlo e de erradicação da brucelose, as medidas de higie ne a preconizar a nível do rebanho, nomeadamente durante a época de partos, devem ser prioritárias, tendo em conta a facilidade com que a bactéria contamina o meio ambiente durante esta época. As exigências de higie ne começam pelos interesses profissionais, pelo que os agentes sanitários devem ter em conta o aspecto económico do problema, uma vez que as medidas a preconizar, devem ter como objectivo a melhoria do rendimento da exploração, sem perturbar a cadeia de produção.

2.2 Epidemiologia da brucelose Humana

Apesar dos esforços desenvolvidos no seu controlo, a brucelose continua a ser uma das principais zoonoses com impacto na Saúde Pública, sendo considerada uma doença de carácter ocupacional, que infetca sobretudo profissionais, como os veterinários, os produtores, os pastores, os inspectores sanitários e os magarefes. Os técnicos de laboratório podem igualmente contrair a infecção, caso não se protejam devidamente (Hartigan, 1997).

Das seis espécies reconhecidas actualmente no género Brucella, apenas a Brucella melitensis, a Brucella abortus e a Brucella suis parecem ser importantes em Saúde Pública. Em cada ano são declarados 0,5 milhões de casos humanos à O.M.S., a maioria devido à Brucella melitensis, infecção endémica na região do Mediterrâneo, na América Latina e na Ásia (WHO, 1998).

Em Portugal, a brucelose por Brucella melitensis é a forma mais frequente, com excepção da Região Autónoma dos Açores, onde predomina a Brucella abortus. Não foi ainda publicado nenhum caso de brucelose humana como resultado de infecção por Brucella suis.

A infecção do Homem pode ser causada pela penetração da Brucella através da pele, íntegra ou com abrasões e feridas, inalação de aerossóis contendo o microrganismo (importante nos matadouros), deposição na conjuntiva ou outras mucosas, e pelo consumo de produtos lácteos não pasteurizados (Currier, 1989).
A infecção por contacto directo, Homem-Homem é pouco provável, embora a possibilidade de transmissão da mãe para o filho através da amamentação, tenha sido descrita (Sharda e Helin, 1988).

Os produtos de origem animal, nomeadamente derivados de leite fresco como o queijo, estão associados à maioria dos casos de brucelose humana na população em geral. Por vezes, afectam turistas que pretendem degustar a gastronomia dos Países que visitam (CDR, 1994).

A contaminação directa dos trabalhadores dos matadouros, cuja infecção pode ocorrer por via aerógena ou conjuntival, é prevenida pela adopção de medidas próprias de higiene no contacto com as glândulas mamárias, os órgãos reprodutivos e os linfonodos. Estas precauções reduzem, igualmente, a contaminação das carcaças, durante a sua manipulação.

Após um período de incubação de 5 a 30 dias (por vezes meses), os pacientes são vítimas de uma doença caracterizada por febre contínua, intermitente ou irregular, dores de cabeça, fraqueza, suores profusos, calafrios, dores articulares, perda de peso e mal estar generalizado. Sem tratamento, os sintomas podem persistir durante meses levando a vários graus de incapacidade. A morte é ocasional, resultado de infecções secundárias ou de endocardite, que ocorre em menos de 2% dos casos de brucelose humana (Young, 1995).

A ocorrência da infecção humana depende da prevalência da doença nos animais, podendo ocorrer sem ser detectada pelos métodos sorológicos convencionais utilizados nos efectivos animais (Fiocre, 1990).

O diagnóstico definitivo da brucelose é feito pelo isolamento do agente causal, a partir de hemoculturas em meio de Castañeda. No entanto, a confirmação da infecção por bacteriologia só ocorre em menos de 20% dos pacientes com títulos elevados de anticorpos (Stiles, 2000). Os testes imunológicos, tal como sucede nos animais, são o principal meio de diagnóstico da brucelose no Homem. As reações de seroaglutinação lenta (Prova de Wright) e as de seroaglutinação rápida ou em placa são as mais usadas. Outras têm sido utilizadas, como a prova de Coombs, a Fixação do Complemento, a imunofluorescência indirecta, a prova de antigénio tamponado (PAT), a reação de hemaglutinação passiva e a reacção alérgica (Roux, 1978; Díaz and Moriyón, 1989).
A prevenção da brucelose humana depende do controlo da doença nos animais domésticos e da educação dos consumidores e dos profissionais para a prevenção da transmissão.
CAPÍTULO 3

CARACTERIZAÇÃO DA REGIÃO EM ESTUDO

3.1 A Região em estudo

A região em estudo (Figura n.º 1) engloba os concelhos de Castelo Branco, Idanha-a-Nova e Vila Velha de Rodão, cobrindo uma extensão territorial de 3182,6 Km², correspondendo a uma zona de transição entre o Portugal montanhoso do Norte e o Portugal aplanado do Sul. A região é delimitada a Norte pelos concelhos do Fundão e Penamacor, e pela Serra da Gardunha. A Sul, pelo Rio Tejo, pelo Alto Alentejo e pela Extremadura Espanhola que se prolonga para Este, ficando a Oeste a zona do Pinhal.

3.2 Indicadores demográficos e movimento da população

Em 1999, a população total da região era de 70390 pessoas (INE, 1999) com uma densidade populacional de 22 Hab./Km², inferior à observada na Região Centro de Portugal (72,3 Hab./Km²). Qualquer dos concelhos da área em estudo, apresenta uma densidade populacional inferior à densidade populacional das zonas consideradas desfavorecidas na União Europeia (46 Hab./Km²), sendo a densidade populacional observada no concelho de Idanha-a-Nova, a mais baixa do país (Tabela n.º 2).
Figura n.º 1 - Área de acção da OPP - Ovibeira
<table>
<thead>
<tr>
<th>Concelho</th>
<th>Área (Km²)</th>
<th>População residente (1999)</th>
<th>Densidade populacional</th>
<th>N.º de freguesias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castelo Branco</td>
<td>1439.94</td>
<td>54250</td>
<td>37,7</td>
<td>25</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>1412.73</td>
<td>11700</td>
<td>8,3</td>
<td>17</td>
</tr>
<tr>
<td>Vila Velha de Ródão</td>
<td>329.93</td>
<td>4440</td>
<td>13,3</td>
<td>4</td>
</tr>
</tbody>
</table>

Fonte: INE (1999)

Tabela n.º 2 - Área, população, freguesias e densidade populacional (por concelho)

Desde 1950, a população da região decresceu cerca de 39 %, com maior impacto nos concelhos de Idanha-a-Nova e Vila Velha de Rodão, onde o decréscimo foi de 64 %, sendo menor no concelho de Castelo Branco (14,4 %).
A população tem vindo a envelhecer. Cerca de 26 % da população tem mais de 65 anos, valores que atingem os 40 % e os 37 %, respectivamente, em Idanha-a-Nova e Vila Velha de Rodão (Tabela n.º 3).

<table>
<thead>
<tr>
<th>Grupos etários</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concelho</td>
<td>0 - 14</td>
<td>15 - 24</td>
<td>25 - 64</td>
<td>> 65</td>
</tr>
<tr>
<td>Castelo Branco</td>
<td>7450</td>
<td>7250</td>
<td>27690</td>
<td>11860</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>1080</td>
<td>1280</td>
<td>4610</td>
<td>4730</td>
</tr>
<tr>
<td>Vila Velha de Ródão</td>
<td>380</td>
<td>490</td>
<td>1900</td>
<td>1630</td>
</tr>
</tbody>
</table>

Fonte: INE (1999)

Tabela n.º 3 - Distribuição da população por grupos etários (por concelho)

A taxa de natalidade nos concelhos de Idanha-a-Nova e Vila Velha de Rodão é cerca de metade da verificada em Portugal (11,35 %). A taxa de mortalidade é superior à média nacional (10,54 %), duplicando nos concelhos de Idanha-a-Nova e Vila Velha de Rodão (Tabela n.º 4). A taxa de mortalidade infantil, registada no período de 1994/98, assume particular importância considerando que esta taxa na Região Centro (5,8 %) é inferior à registada para Portugal (6,9 %).
Tabela n.º 4 - Indicadores de saúde (por concelho)

<table>
<thead>
<tr>
<th>Concelho</th>
<th>Nados-Vivos</th>
<th>Óbitos</th>
<th>Taxa da natalidade (%)</th>
<th>Taxa de mortalidade (%)</th>
<th>Mortalidade infantil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castelo Branco</td>
<td>481</td>
<td>705</td>
<td>8,87</td>
<td>13,00</td>
<td>6,8</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>64</td>
<td>250</td>
<td>5,41</td>
<td>21,15</td>
<td>3,2</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>20</td>
<td>96</td>
<td>4,51</td>
<td>21,67</td>
<td>-</td>
</tr>
</tbody>
</table>

Fonte: INE (1999)

3.3 Caracterização climática

Em termos globais, o clima da região é considerado de feição mediterrânea, com duas estações bem marcadas, quer em termos de temperatura quer em termos de umidade. Segundo a classificação de Koppen, o clima da região inclui-se no grupo dos sub-tropicais do tipo de mediterrâneo, enquanto a classificação de Thornthwaite, classifica o clima da região como sub-húmido chuvoso, com grande deficiência de água no Verão, mesotérmico, com moderada concentração estival da eficiência térmica, com 111,4 dias biologicamente secos (Horta e Gomes, 1984; Horta, 1989).

A temperatura média do ar (Figura n.º 2) é de 15,8 ºC, com uma amplitude térmica de 16,8 ºC, verificando-se a menor média em Janeiro (8,2 ºC) e a mais elevada em Julho (24,8 ºC). Nos meses de Verão, as temperaturas chegam a ultrapassar os 40 ºC, enquanto que no Inverno registam-se temperaturas da ordem dos – 4 ºC (Horta, 1989).

A quantidade de precipitação média anual (Figura n.º 3) é de 812,2 mm, variando de 5,0 mm em Julho a 122,1 mm em Janeiro. O 1º trimestre é o mais pluvioso. A pluviosidade é mais elevada à Norte do Concelho de Castelo Branco (1200 mm), nas freguesias junto à Serra da Gardunha, e menor a Sul, especialmente nas freguesias de Monforte da Beira e Rosmaninho, com precipitações anuais da ordem dos 600 mm (Horta, 1989).
Figura n.º 2 - Temperatura média diária do ar

Figura n.º 3 - Precipitação (Quantidade total)

Em relação à humidade relativa do ar (Figura n.º 4), a média anual é de 69% (valores às 9 horas). Os valores mais baixos ocorrem nos meses de Julho a Agosto.
(49% às 9 horas e 30% às 15 horas), enquanto que os valores mais elevados registram-se em Dezembro e Janeiro (81% às 9 horas e 69% às 15 horas).

Figura n.º 4 - Humidade do ar

Em relação a outros factores climáticos na região, os valores da insolação (Figura n.º 5) atingem 2900 horas anuais a Sul da região, enquanto que a Norte do concelho de Idanha-a-Nova, não ultrapassam as 2600 horas/ano (Horta, 1989).

Figura n.º 5 - Insolação
A quantidade total de radiação solar global varia de 155 a 160 kcal/cm² na maior parte do concelho de Idanha-a-Nova, e parte das freguesias de Monforte da Beira e Malpica do Tejo, em Castelo Branco. No resto da região, os valores são ligeiramente inferiores, de 150 a 155 kcal/cm² (Horta e Gomes, 1984).

Relativamente à evapotranspiração (Figura n.º 6), valores mais baixos observam-se a SE do concelho de Idanha-a-Nova (450 mm), designadamente nas freguesias de Rosmaninhal, Segura e Zebreira. A falta de água ocorre sobretudo nos meses de Julho a Setembro (Horta, 1989).

![Mapa de Valores médios anuais (mm)](image)

Figura n.º 6 - Evapotranspiração real (Quantidade de água devolvida à atmosfera)

As geadas (Figura n.º 7) ocorrem na região a partir de Outubro e prolongam-se até Março, com mais de 50 % dos dias com geada a concentrarem-se em Dezembro e Janeiro. O número de dias de geada aumenta de 20 (Castelo Branco) para mais de 40, à medida que avançamos para Leste (Horta, 1989).
Figura n.° 7 - Geada (Número de dias do ano)

3.4 Caracterização geral dos solos

3.4.1 Caracterização geológica

Do ponto de vista geológico, os concelhos de Castelo Branco e de Vila Velha de Rodão, são essencialmente constituídos por rocha eruptiva hercinica, fazendo parte do maciço granodiorítico da Beira. O complexo xisto-grauváquico, também conhecido por “Formação Xistosa das Beiras” ocupa uma grande extensão (Pinto, 1987).

No concelho de Idanha-a-Nova, predominam os solos litólicos não-húmicos, solos delgados, por vezes associados a afloramentos rochosos. As principais limitações relacionam-se com a textura dos solos (areno-franco ou franco-arenosos, podendo ir até franco nos aluviões), correspondendo a solos de baixa fertilidade e reduzida capacidade de retenção de água.
3.4.2 Caracterização morfológica - altitudes e declives

O concelho de Castelo Branco apresenta uma extensa superfície, na sua maioria plana, variando as suas cotas entre 100 e 1200 m (PDAR, 1991). A zona montanhosa tem a sua maior expressão a Norte e Nordeste do concelho, atingindo a altitude máxima de 1200 m, na Serra da Garunha. As áreas de cotas inferiores a 200 m situam-se nas imediações dos rios e ribeiras, nomeadamente os rios Tejo e Pônsul, e nas ribeiras de Avril e Alpeadre. Na restante área, as cotas variam entre 200 e 400 m.

As zonas de maior declive localizam-se nas freguesias localizadas a NE, cujos valores não ultrapassam 10 %, conferindo-lhes boa aptidão agrícola. Maiores declives podem ser encontrados nalgumas margens de rios e ribeiras, nomeadamente a Norte do concelho, onde por vezes atingem declives de 25 %.

Relativamente ao concelho de Vila Velha de Rodão, observa-se uma certa heterogeneidade orográfica, por vezes com uma topografia bastante acidentada, com encostas de declives muito acentuados, facilitando a erosão e o assoreamento dos leitos das ribeiras e dos rios.

As cotas mais elevadas (600 m) localizam-se a NW do referido concelho, apresentando as zonas envolventes valores compreendidos entre 200 e 400 m. Os valores mais baixos, de 50 a 100 m, localizam-se em zonas contíguas ao leito do rio Tejo. Os maiores declives predominam a W do concelho, junto à margem do rio Ocreza, com declives que ultrapassam os 35 %. No sentido NW/SE, declives entre 15 e 25 % seccionam o concelho. Nas regiões NE e SE observam-se zonas menos acidentadas.

No concelho de Idanha-a-Nova, as cotas mais elevadas (>500 m) localizam-se na região Norte do concelho, correspondendo às freguesias de Penha Garcia e de Monsanto, com declives entre 15 e 25 %. Toda a restante região apresenta cotas entre 200 e 400 m, sendo as mais baixas localizadas junto ao leito do rio Pônsul. Os declives variam entre 4 a 8 %.
3.5 Hidrografia

Devido à fraca permeabilidade dos solos nestes concelhos, quando a precipitação é súbita e abundante, geram-se nos talvagues, regimes de carácter torrencial. Apesar de todos os concelhos apresentarem uma densa rede hidrográfica, as suas linhas de água caracterizam-se por uma descontinuidade de regime, apresentando a maioria um caudal nulo durante os meses estivais. A quantidade de água na rede hidrográfica não ultrapassa os 300 mm anuais, na maior parte do concelho (PDAR, 1991).

No entanto, é no vale de muitas dessas linhas de água que o desenvolvimento da agro-pecuária assume papel de relevo, dada a maior fertilidade dos solos (Figura n.º 8).

![Mapa de Valores Médios Anuais](image)

Figura n.º 8 - Quantidade de água na rede hidrográfica

Os rios Tejo e Pônsul são os únicos cursos de água de caudal permanente, e a sua influência faz-se sentir nos três concelhos.

No concelho de Vila Velha de Rodão, o rio Ocreza e as ribeiras do Açafal e Lucriz assumem particular importância. Este concelho possui algumas barragens particulares, irrigando uma área de 70 hectares. Por outro lado, neste concelho situam-se duas grandes barragens, Fratel (Tejo) e Pracana (Ocreza), para a produção de energia eléctrica.
No concelho de Castelo Branco, as barragens particulares permitem irrigar uma área de 160 hectares. A barragem da Marateca beneficia mais de 3000 hectares de terrenos agrícolas, embora a sua principal função seja o abastecimento de água ao domicílio das populações do concelho, junto com as barragens do Pisco e Casal da Serra.

O concelho de Idanha-a-Nova apresenta a maior área irrigada, constituindo o chamado perímetro de rega da Idanha, beneficiando aproximadamente cerca de 8200 hectares a partir da barragem Marechal Carmona, no rio Pônsul, a nordeste de Idanha-a-Nova. Outras duas barragens no concelho, a de Penha Garcia, no rio Pônsul, com dupla função de abastecimento de água ao domicílio e hidro-agricola (25 hectares), e a da ribeira da Toulica, que para além do abastecimento de água domiciliário, permite a rega de uma área de 250 hectares. As barragens particulares neste concelho permitem a irrigação adicional de 400 hectares.

3.6 Capacidade de uso dos solos

Na região estudada são consideradas 5 classes (PDAR, 1991), no que se refere à capacidade do uso de solos (Figura n.º 9):

![Classe A](image)
![Classe C](image)
![Classe F](image)
![Classe A+C](image)
![Classe A+F](image)
![Classe C+F](image)

Figura n.º 9 - Capacidade de uso do solo
Classe A – Corresponde a solos de utilização agrícola elevada, que se encontram principalmente no concelho de Idanha-a-Nova.
Classe C – Corresponde a solos de utilização agrícola condicionada. São solos com certas limitações, susceptíveis de utilização agrícola reduzida e correspondem a zonas complementares agrícolas.
Classe F – Nesta classe, a mais representativa, encontram-se os solos que possuem limitações muito severas, não sendo susceptíveis de utilização agrícola. São indicados para a exploração florestal e matas.
Complexo A+F – Solos com aptidões agrícolas e florestais.
Complexo C+F – Engloba os solos com aptidão agrícola condicionada e florestal.

3.7 Caracterização geral das explorações agrícolas

A região em causa reúne um total de 8680 explorações agrícolas, correspondendo a 14,4 % do total das unidades produtivas da Região Agrária da Beira Interior, ocupando uma área total de 204272 hectares (Tabela n.º 5).

<table>
<thead>
<tr>
<th>Concelhos</th>
<th>Total de explorações agrícolas</th>
<th>Área total (ha)</th>
<th>Média (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castelo Branco</td>
<td>5686</td>
<td>60795</td>
<td>10.69</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>1766</td>
<td>55193</td>
<td>31.25</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>1228</td>
<td>7427</td>
<td>6.05</td>
</tr>
<tr>
<td>Total</td>
<td>8680</td>
<td>123415</td>
<td>14.22</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 5 - Número e área de explorações com S.A.U. (por concelho)

A S.A.U. média é de 14,22 hectares por exploração, sendo maior em Idanha-a-Nova, com uma média de 31,25 hectares, a mais elevada de toda a Beira Interior.
Em relação às freguesias da região, no concelho de Idanha-a-Nova, as freguesias do Rosmaninhel (173,3 ha) e Idanha-a-Velha (132,9 ha), são as que maior S.A.U. média apresentam, e apenas três, Aldeia de Santa Margarida (9,5 ha), Monsanto
(9,3 ha) e Toulões (5,1 ha) não atingem os 10 hectares de S.A.U. média. No concelho de Vila Velha de Rodão, todas as freguesias têm uma S.A.U. média inferior a 10 hectares, enquanto que no concelho de Castelo Branco, a freguesia de Alcains apresenta a maior S.A.U. média. Neste concelho, as freguesias que se encontram na zona de transição para a região do Pinhal, têm igualmente uma S.A.U. média inferior a 10 hectares.

As explorações com S.A.U. superior a 50 hectares constituem apenas 4,02 % do total das explorações, valor superior ao observado na Beira Interior, atingindo 10,25 % das explorações de Idanha-a-Nova (Tabela n.º 6).

<table>
<thead>
<tr>
<th>Classes de SAU (ha)</th>
<th>Castelo Branco</th>
<th>Idanha-a-Nova</th>
<th>Vila Velha de Rodão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.º</td>
<td>%</td>
<td>N.º</td>
</tr>
<tr>
<td>0 a < 0,5</td>
<td>61</td>
<td>1,07</td>
<td>16</td>
</tr>
<tr>
<td>0,5 a < 1</td>
<td>956</td>
<td>16,81</td>
<td>195</td>
</tr>
<tr>
<td>1 a < 2</td>
<td>1687</td>
<td>29,67</td>
<td>484</td>
</tr>
<tr>
<td>2 a < 3</td>
<td>900</td>
<td>15,83</td>
<td>205</td>
</tr>
<tr>
<td>3 a < 4</td>
<td>537</td>
<td>9,44</td>
<td>128</td>
</tr>
<tr>
<td>4 a < 5</td>
<td>299</td>
<td>5,26</td>
<td>110</td>
</tr>
<tr>
<td>5 a < 10</td>
<td>670</td>
<td>11,78</td>
<td>189</td>
</tr>
<tr>
<td>10 a < 20</td>
<td>292</td>
<td>5,14</td>
<td>142</td>
</tr>
<tr>
<td>20 a < 30</td>
<td>77</td>
<td>1,35</td>
<td>50</td>
</tr>
<tr>
<td>30 a < 50</td>
<td>54</td>
<td>0,95</td>
<td>66</td>
</tr>
<tr>
<td>50 a < 100</td>
<td>49</td>
<td>0,86</td>
<td>61</td>
</tr>
<tr>
<td>100 a < 200</td>
<td>49</td>
<td>0,86</td>
<td>43</td>
</tr>
<tr>
<td>200 a < 500</td>
<td>34</td>
<td>0,60</td>
<td>54</td>
</tr>
<tr>
<td>500 a < 1000</td>
<td>18</td>
<td>0,32</td>
<td>19</td>
</tr>
<tr>
<td>> 1000</td>
<td>3</td>
<td>0,05</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>5686</td>
<td>100</td>
<td>1766</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 6 - Número de explorações agrícolas por classe de S.A.U. (por concelho)
A maior concentração de S.A.U. verifica-se na classe de 200 a 500 hectares, que reúne 23,18 % da S.A.U. da região em 40 explorações (Tabelas n.º 6 e 7). No que se refere aos produtores de ovinos da região, as explorações atingem em média 506,98 ± 62,07 hectares em Idanha-a-Nova e 250,71 ± 60,71 hectares em Castelo Branco (Fragoso de Almeida et al., 1992).

<table>
<thead>
<tr>
<th>Classes de SAU (ha)</th>
<th>Castelo Branco</th>
<th>Idanha-a-Nova</th>
<th>Vila Velha de Rodão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAU (ha)</td>
<td>%</td>
<td>SAU (ha)</td>
</tr>
<tr>
<td>0 a < 0,5</td>
<td>19</td>
<td>0,03</td>
<td>4</td>
</tr>
<tr>
<td>0,5 a < 1</td>
<td>667</td>
<td>1,10</td>
<td>137</td>
</tr>
<tr>
<td>1 a < 2</td>
<td>2361</td>
<td>3,88</td>
<td>650</td>
</tr>
<tr>
<td>2 a < 3</td>
<td>2189</td>
<td>3,60</td>
<td>488</td>
</tr>
<tr>
<td>3 a < 4</td>
<td>1839</td>
<td>3,02</td>
<td>427</td>
</tr>
<tr>
<td>4 a < 5</td>
<td>1324</td>
<td>2,18</td>
<td>479</td>
</tr>
<tr>
<td>5 a < 10</td>
<td>4562</td>
<td>7,50</td>
<td>1304</td>
</tr>
<tr>
<td>10 a < 20</td>
<td>4011</td>
<td>6,60</td>
<td>1914</td>
</tr>
<tr>
<td>20 a < 30</td>
<td>1917</td>
<td>3,15</td>
<td>1198</td>
</tr>
<tr>
<td>30 a < 50</td>
<td>2003</td>
<td>3,29</td>
<td>2488</td>
</tr>
<tr>
<td>50 a < 100</td>
<td>3544</td>
<td>5,83</td>
<td>4125</td>
</tr>
<tr>
<td>100 a < 200</td>
<td>7044</td>
<td>11,59</td>
<td>6125</td>
</tr>
<tr>
<td>200 a < 500</td>
<td>10850</td>
<td>17,84</td>
<td>17291</td>
</tr>
<tr>
<td>500 a < 1000</td>
<td>11892</td>
<td>19,56</td>
<td>13072</td>
</tr>
<tr>
<td>> 1000</td>
<td>6579</td>
<td>10,82</td>
<td>5499</td>
</tr>
<tr>
<td>Total</td>
<td>60795</td>
<td>100</td>
<td>55193</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 7 - Distribuição da S.A.U. (ha) por concelho

A dispersão da S.A.U. por blocos distintos (Tabela n.º 8) não se afigura grave, pois 66 % das explorações apresentam entre 1 a 5 blocos, e apenas 14 % fragmentam a S.A.U. por 10 ou mais blocos. A S.A.U. é ainda menos repartida
em Idanha-a-Nova, onde 72% das explorações têm 1 a 3 blocos. Esta proporção
decresce para 25%, em Vila Velha de Rodão.
O número médio de blocos por exploração é de 5,38 em Castelo Branco, de 3,0
em Idanha-a-Nova e de 7,19 em Vila Velha de Rodão.
Por outro lado, cerca de 66% da S.A.U. está distribuídas por explorações com um
máximo de 5 blocos, embora em Vila Velha de Rodão essa percentagem seja
apenas de 37%.

<table>
<thead>
<tr>
<th></th>
<th>1 a 3</th>
<th>4 a 5</th>
<th>6 a 9</th>
<th>10 a 19</th>
<th>≥ 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concelhos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castelo Branco</td>
<td>2493</td>
<td>25624</td>
<td>1139</td>
<td>12538</td>
<td>1241</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9883</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7390</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5370</td>
<td></td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>1279</td>
<td>31930</td>
<td>267</td>
<td>7440</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7214</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2830</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5785</td>
<td></td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>303</td>
<td>911</td>
<td>267</td>
<td>1834</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2252</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4075</td>
<td>58465</td>
<td>1673</td>
<td>21812</td>
<td>1750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19349</td>
<td>1018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12120</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11686</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: (INE, 1992)

Tabela n.º 8 - Distribuição da S.A.U. por número de blocos (por concelho)

Em relação ao acesso às explorações (Tabela n.º 9), cerca de 4% das explorações,
representando 4% da S.A.U. da região, têm mais de metade dos blocos sem
comunicação para a via pública, valor inferior aos 13% que a Beira Interior
regista. A maior inacessibilidade observa-se nas explorações de menor dimensão
de S.A.U.
<table>
<thead>
<tr>
<th></th>
<th>1 a 3</th>
<th>4 a 5</th>
<th>6 a 9</th>
<th>10 a 19</th>
<th>≥ 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 50 % s/</td>
</tr>
<tr>
<td>Acesso</td>
<td>Acesso</td>
<td>Acesso</td>
<td>Acesso</td>
<td>Acesso</td>
<td>Acesso</td>
</tr>
<tr>
<td>Concelhos</td>
<td>N.°</td>
<td>SAU</td>
<td>N.°</td>
<td>SAU</td>
<td>N.°</td>
</tr>
<tr>
<td>Castelo Branco</td>
<td>79</td>
<td>234</td>
<td>48</td>
<td>109</td>
<td>34</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>53</td>
<td>1823</td>
<td>8</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>27</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>138</td>
<td>2065</td>
<td>63</td>
<td>229</td>
<td>79</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 9 - Explorações agrícolas com mais de 50 % dos blocos sem acesso a uma via pública (por concelho)

Em relação à natureza jurídica dos produtores (Tabela n.º 10), os produtores singulares, autónomos e empresários, predominam na região, representando 91 % da S.A.U. disponível.

<table>
<thead>
<tr>
<th></th>
<th>Autónomo</th>
<th>Empresário</th>
<th>Sociedade</th>
<th>Coop. agrícola</th>
<th>Estado e Outras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concelhos</td>
<td>N.°</td>
<td>SAU</td>
<td>N.°</td>
<td>SAU</td>
<td>N.°</td>
</tr>
<tr>
<td>Castelo Branco</td>
<td>5492</td>
<td>27774</td>
<td>181</td>
<td>27488</td>
<td>16</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>1604</td>
<td>23356</td>
<td>138</td>
<td>26955</td>
<td>22</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>1209</td>
<td>5049</td>
<td>21</td>
<td>1282</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8305</td>
<td>56179</td>
<td>340</td>
<td>55725</td>
<td>40</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 10 - Explorações segundo a natureza jurídica do produtor e S.A.U. (por concelho)

A forma de exploração por conta própria abrange 92 % das explorações agrícolas, ocupando 66 % da S.A.U. da região (Tabela n.º 11). No entanto, em Idanha-a-Nova esta forma de exploração apenas abrange 52 % da S.A.U. disponível,
ficando 44% da S.A.U. sob arrendamento fixo. Esta forma de exploração assume maior expressão nas explorações com mais de 50 hectares de S.A.U.

<table>
<thead>
<tr>
<th>Concelhos</th>
<th>Conta própria</th>
<th>Arrendamento fixo</th>
<th>Outras</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.º</td>
<td>SAU</td>
<td>N.º</td>
</tr>
<tr>
<td>Castelo Branco</td>
<td>5581</td>
<td>44394</td>
<td>354</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>1622</td>
<td>28640</td>
<td>266</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>1223</td>
<td>6918</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>8426</td>
<td>79952</td>
<td>623</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 11 - Explorações segundo a forma de exploração de S.A.U. e S.A.U. (por concelhos)

O nível de instrução dos agricultores da região é baixo: 46% têm apenas o nível de instrução básico e 29% não sabem ler nem escrever (Tabela n.º 12). O analfabetismo atinge em Idanha-a-Nova, 38% dos produtores.

<table>
<thead>
<tr>
<th>Nível de instrução</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Concelhos</td>
</tr>
<tr>
<td>Castelo Branco</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 12 - População agrícola segundo o nível de instrução (por concelho)

Em relação ao número de anos em actividade, segundo um inquérito efectuado em 1987 aos produtores de ovinos na região, 42% dos produtores estavam na actividade há mais de 25 anos, enquanto 15% tinham menos de 4 anos de
actividade (Fragoso de Almeida et al., 1992), reflexo dos incentivos agropecuários que surgiram com a adesão de Portugal à CEE.

3.8 Utilização da terra

Estendendo-se por uma área de 204302 hectares, as explorações agrícolas desta região contribuem com 123418 hectares da superfície agrícola utilizável do País. A área agrícola abandonada é relativamente elevada, ~16 % da superfície agrícola total, consequência do êxodo rural, do envelhecimento da população agrícola e da emigração (INE, 1989).

A superfície florestal das explorações ocupa 29 % da área total, num total de cerca de 60000 hectares, com maior expressão em Castelo Branco, onde a floresta ocupa 38 % da área agrícola. Apenas 3,5 % da área florestada também tem utilização agrícola (culturas temporárias). A floresta constitui uma das principais riquezas da região, que tem uma grande indústria de papel em Vila Velha de Rodão. As freguesias com maior percentagem de área florestada são S. Vicente da Beira (72 %), Santo André das Tojeiras (71 %), Rosmanínhal (73 %), Malpica do Tejo (75 %), Sarzedas (75 %) e Almaceda (79 %) (ESACB, 1998).

A parte da S.A.U. relativa às terras aráveis corresponde a 56146 hectares. Em Vila Velha de Ródão as terras aráveis atingem o valor mais baixo na região, apenas 32% da S.A.U. total, contra os 50 % que se registam em Idanha-a-Nova (INE, 1989).

A percentagem de terra arável varia muito de freguesia para freguesia, dentro de cada concelho. No entanto, as discrepâncias maiores são observadas no concelho de Castelo Branco. Aí, a percentagem de terras aráveis varia de 13 %, na freguesia das Sarzedas, até 94 % na freguesia da Mata. Em Idanha-a-Nova, a freguesia de Penha Garcia tem a menor percentagem de terras aráveis (18 %), enquanto a de Salvaterra do Extremo apresenta 98 % de terras aráveis em relação à superfície total. No entanto, neste concelho, a maioria das freguesias tem uma percentagem de terras aráveis acima dos 75 %. Em Vila Velha de Rodão, as percentagens variam entre os 34 % no Fratel, e os 48 % nos Perais.
A acrescentar à superfície agrícola não utilizável, 32,2 % das terras aráveis são mantidas anualmente em pousio, o que traduz uma baixa intensificação de culturas decorrente da capacidade de uso dos solos. Os pousios assumem maior importância em Idanha-a-Nova (37,4 %) em contraste com Vila Velha de Rodão (16,4 %). Em toda a região, as freguesias com maior percentagem de S.A.U. em pousio são Monforte da Beira com 51 % e Idanha-a-Velha com 47 % da superfície total.

A área reservada às hortas familiares, que é incluída nas terras aráveis, é de 1053 hectares. A percentagem de S.A.U. para a fruticultura não tem expressão nesta região. No entanto, a percentagem de explorações com fruticultura é elevada nas freguesias do Louriçal do Campo (83 %), Alcains (71 %), Ladoeiro (45 %) e Castelo Branco (43 %).

Entre as culturas principais (Tabela n.º 13) destacam-se as forragens, os prados e pastos temporários. A percentagem de S.A.U. com culturas de cereal de Outono/Inverno atinge 85 % da S.A.U. disponível em Idanha-a-Velha, 35 % em Penha Garcia e 26 % na freguesia do Oledo. Na restante área da região, as percentagens são inferiores a 10 %.

<table>
<thead>
<tr>
<th>Concelhos</th>
<th>Primeira produção</th>
<th>Segunda produção</th>
<th>Terceira produção</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castelo Branco</td>
<td>Culturas forrageiras (1)</td>
<td>Milho forrageiro</td>
<td>Prados, Pastagens Temporários</td>
<td>4684</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>Aveia</td>
<td>Culturas forrageiras (1)</td>
<td>Prados, Pastagens Temporários</td>
<td>3403</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>Culturas forrageiras (1)</td>
<td>Milho forrageiro</td>
<td>Consociações anuais (2)</td>
<td>892</td>
</tr>
</tbody>
</table>

(1) Inclui todas as culturas forrageiras, excepto sachadas, consociações anuais, milho forrageiro e sorgo forrageiro; (2) Inclui as culturas forrageiras

Fonte: INE (1992)

Tabela n.º 13 – Culturas principais
Os prados e as pastagens temporárias, têm maior importância no concelho de Idanha-a-Nova, onde a percentagem de S.A.U. nalgumas freguesias é relativamente grande: Segura (85 %), Rosmaninhal (80 %) e Salvaterra do Extremo (75 %). No concelho de Castelo Branco, as áreas de S.A.U. com prados e pastagens temporários é menor, com excepção de Malpica do Tejo com 71 % de S.A.U. dedicada a esta produção.

Em relação às culturas permanentes (Tabela n.º 14), as oliveiras para azeite e azeitona de mesa predominam na região. A área de S.A.U. com oliveiras é importante na maioria das freguesias, caracterizando mesmo vastas áreas, sobretudo nos concelhos de Castelo Branco e Vila Velha de Rodão.

<table>
<thead>
<tr>
<th>Concelhos</th>
<th>Primeira cultura</th>
<th>Área (ha)</th>
<th>Segunda cultura</th>
<th>Área (ha)</th>
<th>Terceira cultura</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castelo Branco</td>
<td>Oliveiras para azeite</td>
<td>14693</td>
<td>Videiras para vinho</td>
<td>1600</td>
<td>Oliveiras (azeitona de mesa)</td>
<td>474</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>Oliveiras para azeite</td>
<td>6547</td>
<td>Oliveiras (azeitona de mesa)</td>
<td>454</td>
<td>Videiras para vinho</td>
<td>261</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>Oliveiras para azeite</td>
<td>3974</td>
<td>Videiras para vinho</td>
<td>58</td>
<td>Amendoeiras</td>
<td>21</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 14 – Culturas permanentes

Apesar da vinha ser uma das principais culturas da região, as percentagens de S.A.U. são baixas, exibindo alguma expressão, apenas nas freguesias de Salgueiro do Campo (12 %) e Ninho do Açor (18 %). No entanto, a percentagem de explorações com área de vinha é grande, como em Ninho do Açor (84 %), Louisa (76 %), Tinalhas (69 %), Salgueiro do Campo (68 %), Sarzedas (66 %), S. Miguel D’Acha (65 %) e Sobral do Campo (60 %).
As pastagens permanentes (Tabela n.º 15), que constituem a principal fonte de alimentação dos ruminantes, ocupam uma área total de 35390 hectares.

<table>
<thead>
<tr>
<th>Concelhos</th>
<th>Nº de explorações</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castelo Branco</td>
<td>490</td>
<td>12517</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>416</td>
<td>22537</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>69</td>
<td>336</td>
</tr>
<tr>
<td>Total</td>
<td>975</td>
<td>35390</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 15 – Pastagens permanentes

A percentagem de S.A.U. ocupada com prados e pastagens permanentes é relativamente baixa na região, atingindo os valores mais elevados nas freguesias de Segura (85 %), Rosmaninhal (80 %), Salvaterra do Extremo (76 %), Malpica do Tejo (71 %) e Monfortinho (56 %). Nas restantes freguesias, registam-se percentagens inferiores a 50 % do total de S.A.U..

3.9 O sector pecuário

3.9.1 Caracterização geral das explorações pecuárias

A pecuária constitui uma das maiores fontes de rendimento das explorações agrícolas da região. A produção de ovinos e caprinos predomina, tendo assumido importância crescente nos sistemas agrícolas da região, substituindo actividades em declínio, como por exemplo, a produção de cereais. De facto, a pecuária agrega uma importante faixa da população activa no sector primário, contribuindo decisivamente para contrariar o fenómeno de desertificação.
Os bovinos da região (Tabela n.º 16) são maioritariamente explorados para carne, apesar de existirem algumas explorações de leite de média dimensão, sobretudo no concelho de Idanha-a-Nova.

<table>
<thead>
<tr>
<th>Concelhos</th>
<th>Bovinos</th>
<th>Suínos</th>
<th>Equinos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.º explorações</td>
<td>N.º de animais</td>
<td>N.º explorações</td>
</tr>
<tr>
<td>Castelo Branco</td>
<td>801</td>
<td>3649</td>
<td>2235</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>341</td>
<td>5535</td>
<td>627</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>66</td>
<td>268</td>
<td>282</td>
</tr>
<tr>
<td>Total</td>
<td>1208</td>
<td>9452</td>
<td>3144</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 16 – Explorações de bovinos, suínos e equinos

Em relação aos suínos, as explorações industriais da região localizam-se fundamentalmente na freguesia de Alcains. Em 1999, foram registadas 432 explorações com porcas reprodutoras e um total de 2235 porcas reprodutoras na D.R.A.B.I.. A maioria das explorações são familiares, vocacionadas para a tradicional criação do porco para autoconsumo e para o fabrico de enchidos regionais caseiros.

Os equinos têm sido explorados para trabalho, mas tal como noutras regiões do País, regista-se um crescimento da criação de cavalos para desporto.

A criação de coelhas reprodutoras (Tabela n.º 17) é feita para autoconsumo. O cenário é o mesmo relativamente às aves de capoeira com os tradicionais galinheiros implantados junto às casas.
<table>
<thead>
<tr>
<th>Concelhos</th>
<th>Coelhas reprodutoras</th>
<th>Aves de capoeira</th>
<th>Colmeias e cortiços</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.º explorações</td>
<td>N.º de animais</td>
<td>N.º explorações</td>
</tr>
<tr>
<td>Castelo Branco</td>
<td>1123</td>
<td>2595</td>
<td>4386</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>153</td>
<td>407</td>
<td>1172</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>268</td>
<td>714</td>
<td>822</td>
</tr>
<tr>
<td>Total</td>
<td>1544</td>
<td>3716</td>
<td>6380</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 17 – Explorações de coelhas reprodutoras, aves de capoeira, colmeias e cortiços

Os pequenos ruminantes constituem, provavelmente, uma das maiores riquezas agrícolas da região, constituindo-se esta, como uma das regiões de Portugal com maior número de cabeças. No entanto, os rebanhos de ovinos têm vindo a revelar-se como a espécie animal dominante, em grande parte, devido às dificuldades de maneio que os caprinos impõem aos produtores. A produção de leite, é a principal produção dos efectivos, para o fabrício de queijo. No concelho de Castelo Branco (Tabela n.º 18), predominam os ovinos, com uma média de 82 fêmeas reprodutoras por rebanho. Os rebanhos de ovinos têm maior dimensão nas freguesias de Alcains, Castelo Branco, Malpica do Tejo e Monforte da Beira.

Os rebanhos de caprinos, constituídos por um número pequeno de animais, com uma média de 7 animais por rebanho, predominam nas freguesias mais ocidentais, reflectindo a capacidade desta espécie animal em se adaptar a zonas com muitos declives e muito florestadas, contribuindo indirectamente para a limpeza das matas.
<table>
<thead>
<tr>
<th>Freguesias</th>
<th>Total de ovinos</th>
<th>Fêmeas reprodutoras</th>
<th>Total de caprinos</th>
<th>Fêmeas reprodutoras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcains</td>
<td>52</td>
<td>14746</td>
<td>52</td>
<td>13576</td>
</tr>
<tr>
<td>Almaceda</td>
<td>10</td>
<td>66</td>
<td>6</td>
<td>53</td>
</tr>
<tr>
<td>Benquerenças</td>
<td>56</td>
<td>1179</td>
<td>49</td>
<td>1013</td>
</tr>
<tr>
<td>Cafede</td>
<td>18</td>
<td>1061</td>
<td>18</td>
<td>1024</td>
</tr>
<tr>
<td>Castelo Branco</td>
<td>151</td>
<td>19150</td>
<td>134</td>
<td>17064</td>
</tr>
<tr>
<td>Cebolais de Cima</td>
<td>9</td>
<td>56</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Escalos de Baixo</td>
<td>42</td>
<td>2924</td>
<td>31</td>
<td>2455</td>
</tr>
<tr>
<td>Escalos de Cima</td>
<td>47</td>
<td>2765</td>
<td>46</td>
<td>2227</td>
</tr>
<tr>
<td>Freixial do Campo</td>
<td>22</td>
<td>501</td>
<td>17</td>
<td>416</td>
</tr>
<tr>
<td>Juncal do Campo</td>
<td>38</td>
<td>576</td>
<td>25</td>
<td>492</td>
</tr>
<tr>
<td>Lardosa</td>
<td>64</td>
<td>4399</td>
<td>56</td>
<td>4077</td>
</tr>
<tr>
<td>Lourival do Campo</td>
<td>42</td>
<td>873</td>
<td>26</td>
<td>532</td>
</tr>
<tr>
<td>Lousa</td>
<td>42</td>
<td>3007</td>
<td>42</td>
<td>2516</td>
</tr>
<tr>
<td>Malpica do Tejo</td>
<td>49</td>
<td>5811</td>
<td>48</td>
<td>5459</td>
</tr>
<tr>
<td>Mata</td>
<td>44</td>
<td>1858</td>
<td>44</td>
<td>1527</td>
</tr>
<tr>
<td>Monforte da Beira</td>
<td>35</td>
<td>6715</td>
<td>33</td>
<td>6028</td>
</tr>
<tr>
<td>Ninho do Açor</td>
<td>21</td>
<td>223</td>
<td>6</td>
<td>157</td>
</tr>
<tr>
<td>Póvoa Rio Moinhos</td>
<td>23</td>
<td>1516</td>
<td>22</td>
<td>1410</td>
</tr>
<tr>
<td>Retacho</td>
<td>11</td>
<td>227</td>
<td>7</td>
<td>113</td>
</tr>
<tr>
<td>Salgueiro Campo</td>
<td>51</td>
<td>672</td>
<td>27</td>
<td>506</td>
</tr>
<tr>
<td>Sto André Tojeiras</td>
<td>8</td>
<td>27</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>S. Vicente da Beira</td>
<td>26</td>
<td>584</td>
<td>26</td>
<td>550</td>
</tr>
<tr>
<td>Sarzedas</td>
<td>37</td>
<td>392</td>
<td>35</td>
<td>366</td>
</tr>
<tr>
<td>Sobral do Campo</td>
<td>25</td>
<td>1437</td>
<td>12</td>
<td>1377</td>
</tr>
<tr>
<td>Tinalhas</td>
<td>10</td>
<td>984</td>
<td>7</td>
<td>839</td>
</tr>
<tr>
<td>Total</td>
<td>933</td>
<td>71749</td>
<td>781</td>
<td>63835</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 18 - Número de explorações e animais, por freguesia, no concelho de Castelo Branco (pequenos ruminantes)
No concelho de Idanha-a-Nova (Tabela n.º 19), predominam os ovinos, com rebanhos de maior dimensão do que em Castelo Branco. A mesma tendência ocorre nos caprinos.

<table>
<thead>
<tr>
<th>Freguesias</th>
<th>Total de ovinos</th>
<th>Fêmeas reprodutoras</th>
<th>Total de caprinos</th>
<th>Fêmeas reprodutoras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcafozes</td>
<td>12</td>
<td>1147</td>
<td>12</td>
<td>1093</td>
</tr>
<tr>
<td>Idanha-a-Nova</td>
<td>64</td>
<td>17461</td>
<td>63</td>
<td>15980</td>
</tr>
<tr>
<td>Aldeia de Santa Margarida</td>
<td>27</td>
<td>966</td>
<td>24</td>
<td>907</td>
</tr>
<tr>
<td>Idanha-a-Velha</td>
<td>2</td>
<td>1037</td>
<td>2</td>
<td>1022</td>
</tr>
<tr>
<td>Ladoeiro</td>
<td>98</td>
<td>6637</td>
<td>78</td>
<td>5409</td>
</tr>
<tr>
<td>Medelim</td>
<td>8</td>
<td>1642</td>
<td>6</td>
<td>1220</td>
</tr>
<tr>
<td>Monfortinho</td>
<td>9</td>
<td>765</td>
<td>8</td>
<td>731</td>
</tr>
<tr>
<td>Monsanto</td>
<td>16</td>
<td>1043</td>
<td>14</td>
<td>922</td>
</tr>
<tr>
<td>Oledo</td>
<td>39</td>
<td>5159</td>
<td>39</td>
<td>4846</td>
</tr>
<tr>
<td>Penha Garcia</td>
<td>18</td>
<td>3198</td>
<td>17</td>
<td>3095</td>
</tr>
<tr>
<td>Proença-a-Velha</td>
<td>13</td>
<td>241</td>
<td>13</td>
<td>2244</td>
</tr>
<tr>
<td>Rosmaninhial</td>
<td>40</td>
<td>12639</td>
<td>40</td>
<td>10612</td>
</tr>
<tr>
<td>Salvaterra do Extremo</td>
<td>3</td>
<td>453</td>
<td>3</td>
<td>439</td>
</tr>
<tr>
<td>São Miguel D'Acha</td>
<td>37</td>
<td>2025</td>
<td>33</td>
<td>1770</td>
</tr>
<tr>
<td>Segura</td>
<td>11</td>
<td>1591</td>
<td>11</td>
<td>1503</td>
</tr>
<tr>
<td>Toulões</td>
<td>19</td>
<td>388</td>
<td>17</td>
<td>357</td>
</tr>
<tr>
<td>Zebreira</td>
<td>37</td>
<td>7378</td>
<td>32</td>
<td>6888</td>
</tr>
<tr>
<td>Total</td>
<td>453</td>
<td>63770</td>
<td>412</td>
<td>59038</td>
</tr>
</tbody>
</table>

Fonte: (INE, 1992)

Tabela n.º 19 - Número de explorações e animais, por freguesia, no concelho de Idanha-a-Nova (pequenos ruminantes)
Em termos médios, registra-se um encabeçamento de 143 ovelhas por rebanho de ovinos e 13 cabras por rebanho de caprinos. No total, os ovinos representam 88% dos pequenos ruminantes do concelho.

Nos concelhos de Castelo Branco e de Idanha-a-Nova, as explorações de ovinos têm áreas médias de 133 hectares, com um encabeçamento médio de 2,6 ovelhas por ha (Ribeiro et al., 1993) embora estejam referenciados valores de 1,5 em Idanha-a-Nova e 2,1 em Castelo Branco, assim como áreas médias bastante superiores (Fragoso de Almeida et al., 1992).

Em Vila Velha de Rodão predominam os rebanhos de caprinos, embora em número de animais haja mais ovinos (Tabela n.º 20). A maioria dos rebanhos são de pequena dimensão, ao contrário do que se observa nos outros dois concelhos.

<table>
<thead>
<tr>
<th>Freguesias</th>
<th>Total de ovinos</th>
<th>Fêmeas reprodutoras</th>
<th>Total de caprinos</th>
<th>Fêmeas reprodutoras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fratel</td>
<td>41</td>
<td>279</td>
<td>34</td>
<td>198</td>
</tr>
<tr>
<td>Peraís</td>
<td>51</td>
<td>2792</td>
<td>35</td>
<td>2488</td>
</tr>
<tr>
<td>Sarnadas de Rodão</td>
<td>26</td>
<td>637</td>
<td>20</td>
<td>558</td>
</tr>
<tr>
<td>Vila Velha de Rodão</td>
<td>49</td>
<td>4116</td>
<td>40</td>
<td>3703</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>7824</td>
<td>129</td>
<td>6947</td>
</tr>
</tbody>
</table>

Fonte: INE (1992)

Tabela n.º 20 - Número de explorações e animais, por freguesia, no concelho de Vila Velha de Rodão

Em média, os rebanhos de ovinos são constituídos por 54 fêmeas reprodutoras; os de caprinos, por 7 fêmeas reprodutoras.

A nível da região, o número de pequenas explorações familiares com effectivos inferiores a 15 ovinos, tem vindo a desaparecer como explorações agro-pecuárias, quer devido às exigências de maneio do sistema extensivo de produção, quer
devido à redução da mão de obra familiar como consequência da emigração e de transferências intersectoriais, quer ainda devido a factores socio-económicos indutores de fenómenos de retração característicos do sector primário. Ao contrário do que aconteceu nos ovinos, no caso dos caprinos, foram as pequenas explorações que sobreviveram. Esta espécie animal, é hoje essencialmente explorada, em zonas de minifúndio bastante parcelado e florestadas. Verifica-se assim, serem os caprinos os vectores directos de produtos de autoconsumo (leite e queijo) e de produtos para o mercado (queijo e cabrito) numa escala relacionada com a dimensão familiar das explorações.

3.9.2 As raças exploradas

Explorado com finalidade essencialmente leiteira, o efectivo de cerca de 143000 ovinos encontra-se repartido pelas raças Merino da Beira Baixa, Serra da Estrela, Mondegueira e Churro do Campo. A raça de maior expressão entre os ovinos é o Merino da Beira Baixa, constituindo uma fracção importante do efectivo na Beira Interior, sobretudo na região sul. Em 1992, a raça representava cerca de 52% do efectivo total de ovinos (Fragoso de Almeida et al., 1992).

Esta raça, foi considerada, face às suas características, às exigências de alimentação e maneio, a que melhor se adapta à região. Caracteriza-se, em linhas gerais, por um porte reduzido e características morfofuncionais adaptadas a climas agrestes e a pastagens pobres. É um animal de aptidão carne/lâ, embora seja explorado na aptidão carne/leite. No entanto, face às exigências de mercado, com uma produção de 0,52 l/ovelha/dia, esta raça foi sendo cruzada com outras, como a Mondegueira, para aumentar a produção de leite (Almeida e Rosa, 1992). Nos últimos anos, tem-se assistido a uma introdução de raças exóticas, nomeadamente de Awassi, Assaf e Lacaune, que rapidamente estão a substituir as raças tradicionais, nomeadamente o Merino da Beira Baixa. A população caprina da região é essencialmente constituída pelas raças Serrana e Charnecqueira, e respectivos cruzamentos, explorados na função mista: leite e

57
carne. Tem-se assistido igualmente à introdução de algumas raças exóticas, nomeadamente Saanen e Alpina, e mais recentemente, a Murciana e a Angorá.

3.9.3 Manejo reprodutivo e produtivo

O manejo reprodutivo dos ovinos na região, apesar da introdução de novas raças, mantém-se no regime de um parto anual.
A principal época de cobrição decorre de Abril a Maio, e a época de “repescagem”, em meados de Agosto. É nesta época que são cobertas as borregas de substituição e as ovelhas que se mantiveram em lactação até Julho ou que por motivos diversos, não engravidaram. Face ao preço do borrego durante os meses de Verão, há produtores que recorrem a uma terceira época de cobrição em Janeiro/Fevereiro. Considerando o objectivo primário da produção de leite, tem vindo a ser fomentada a repartição dos partos ao longo de todo ano, de modo a alargar os períodos de produção de queijo.
Em 40 % dos efectivos, os machos permanecem no rebanho todo o ano (Fragoso de Almeida et al., 1992). A inseminação artificial foi ensaiada por diversas entidades públicas e privadas, sobretudo em 1998, mas os resultados obtidos estiveram aquém das expectativas dos produtores. No entanto, as técnicas de sincronização de cio e de superovulação, têm vindo a ser praticadas num número crescente de rebanhos.
A idade ao primeiro parto verifica-se entre os 17 e os 23 meses de idade (Ribeiro et al., 1993). O número médio de parições por ovelha é de 5-6. A taxa de substituição é, em média, de 20 % (Cary, 1985; Fragoso de Almeida et al., 1992).
A média da fertilidade aparente (anual) varia entre os 80 – 91 %, enquanto a taxa de prolificidade varia entre os 108 % e os 128 % (Várzea Rodrigues et al., 1989; Goulão, 1995), tendo por base valores obtidos em rebanhos de Merino da Beira Baixa. Segundo os mesmos Autores, a taxa de fecundidade varia de 63 % a 105,2 %, e a taxa de mortalidade varia de 5,8 a 9,5 %, sendo superior nas crias. A percentagem de partos simples atinge 87 a 92 %, e uma percentagem de 75 a 89 % do total de borregos nascidos. Os partos ocorrem no Outono e no fim do Inverno e
no início da Primavera. O desmame dos borregos é feito às 6 semanas de idade (42 %) ou aos 2 meses (30 %), altura em que são vendidos para consumo, sendo os restantes 28 % vendidos num prazo não definido.

A ordenha inicia-se no Outono e termina no Verão seguinte. Os principais meses de produção estendem-se de Janeiro a Abril. A ordenha realiza-se duas vezes por dia, sendo manual em 99 % das explorações, apesar dos subsídios a fundo perdido para a aquisição de máquinas de ordenha, estabelecidos pelas Portarias n.º 595/81, de 15 de Julho, n.º 488/86, de 4 de Setembro e n.º 379/88, de 14 de Junho. Esta última, estabeleceu um subsídio de 80 % a fundo perdido, até um máximo de 1000 contos, na aquisição e montagem de equipamento de ordenha e de refrigeração de leite de ovelha e de cabra. A introdução de raças exóticas, com maior aptidão para a produção de leite, levou alguns produtores a investir em equipamento de ordenha moderno, mas a maioria apenas aproveita os “cornadises”, nunca utilizando a máquina de ordenha.

A duração média da lactação varia de 151 a 179 dias (Rebello Andrade e Coutinho, 1989). A produção total média varia entre os 49,7 e os 59,3 litros de leite por ovelha/ano, em ovelhas Merino da Beira Baixa, correspondendo a uma produção média /dia de 0,287 a 0,438 litros (Rebello Andrade e Espadinha, 1997). Estes valores variam com a região, de 53,3 litros por ovelha em Idanha-a-Nova, a 28,6 litros em Alcains (Cunha Sampaio e Esteves Curto, 1988). Esta diferença relaciona-se com particularidades ligadas às raças encontradas pelos Autores, e com a duração da amamentação dos borregos, mais longa em Idanha-a-Nova, onde a produção de carne é mais importante. Em rebanhos de Assaf da região observámos valores de 2,3 litros por ovelha/dia.

Praticamente todas as explorações tem ovil (91 %), que é utilizado sobretudo na ordenha (Fragsoso de Almeida et al., 1992). Os rebanhos pernoitam em “bardos” ao ar livre e são recolhidos apenas em noites de intempérie.

Nos caprinos, a idade ao primeiro parto varia entre os 276 dias (chibas nascidas na Primavera) e os 370 dias (chibas nascidas no Outono) (Lopes e Rebello de Andrade, 1990). A idade média de refugo é de 6 anos e a taxa de substituição é de 20 % (Cary, 1985). A taxa de mortalidade varia de 4,8 % nos jovens a 10,4 % nos adultos (Lopes e Rebello de Andrade, 1990).
A época de cobrição das cabras é na Primavera (Abril a Junho) e no final do Verão e Outono (Agosto a Outubro), normalmente com baixa fertilidade, sobretudo na primeira época referida (Lopes e Rebello de Andrade, 1990), provavelmente porque a fertilidade das cabras é normalmente baixa de Março e Agosto, sendo superior entre Setembro e Março (Mascarenhas, 1988). Tendo por base um estudo na região, sobre a raça Charnequeira, a taxa de fertilidade aparente é de 95,4 %, a prolificidade de 147,6 % e a fecundidade de 141 % (Lopes e Rebello de Andrade, 1990). O número médio de parições por cabra, varia entre 5 e 6 (Cary, 1985).

Sendo a maioria dos rebanhos de caprinos, constituídos por um número reduzido de animais, é comum a existência de rebanhos sem machos, sendo a cobrição feita com machos emprestados ou permanecendo as fêmeas em rebanhos vizinhos até serem cobertas.

3.9.4 Regime alimentar

Os pequenos ruminantes da região são criados em regime extensivo, com recurso às pastagens naturais existentes e a subprodutos das explorações agrícolas. As duas culturas principais são a aveia e o centeio que permitem uma utilização mista, isto é, o pastoreio invernal e, posteriormente, a produção de feno ou de grão e palha.

A produção de forragem é limitada, sendo basicamente realizada através de 5 tipos de cultura (Fragoso de Almeida et al., 1992):

1. Tremocilha (*Lupinus luteus* L.): Variedades regionais. Utilizadas em seco (Verão) através do pastoreio directo ou para feno;
2. Feijão Frade (*Vigna sinensis* (L) *Endl. Monachalis* Brots.). Variedades regionais. Utilizado o resíduo, após colheita das vagens, em pastoreio directo (Verão);
3. Milho - “milharada” (*Zea mays*). Variedades regionais. Cultura realizada em sequeiros “frescos”. Utilizada principalmente em pastoreio directo (Verão e princípio do Outono);
4. Cereal de Inverno. Principalmente variedades regionais (Aveia, Centeio e Cevada). Utilizado para pastoreio, fenos e palha (após colheita do grão);
5. Pastagem Espontânea. Conservada por fenação, aproveitando os anos favoráveis em que o pico de produção primaveril é bastante elevado.

O sistema alimentar tem evoluído, sendo prática corrente a suplementação em épocas de carência, com milharadas e/ou feijão pequeno, feno e concentrado comercial. Durante a época de cobrição, não é comum a suplementação mas é importante na época de partos.

Quanto à suplementação das ovelhas em produção, a maioria das explorações recorre a alimentos comerciais (42 %), e à combinação de concentrado comercial e aveia (23 %) (Fragoso de Almeida *et al.*, 1992).

Os caprinos utilizam pastagens a sob-coberto de pinhal e restolhos, sendo complementados nas épocas de carência com fenos, palhas, restos de culturas hortícolas e, raramente, com concentrados.

3.10 Produção e comercialização de produtos de origem animal

3.10.1 A carne

A produção de carne só é uma opção prioritária, em 8 % dos produtores de ovinos (Fragoso de Almeida *et al.*, 1992).

Os borregos, são vendidos com pesos relativamente baixos, face à procura do chamado borrego de “canasta”, com um peso de 7 Kg de carcaça, cerca de 11 a 12 Kg de peso vivo, que atingem entre os 45 e os 60 dias de vida. No entanto, surgem
também no mercado borregos com 16 e 28 Kg de peso vivo, provenientes sobretudo de explorações vocacionadas para a produção de carne (onde a raça dominante não é o Merino da Beira Baixa) ou de explorações cujo manejo reprodutivo não permite que os borregos estejam disponíveis nos períodos de maior procura (Natal e Páscoa) sendo então “engordados”.
Os preços à produção sofrem variações sazonais decorrentes da procura, atingindo preços mais elevados no Natal e na Páscoa, como resultado da tradição de consumo desta espécie nestes períodos, e no Verão, devido à pressão da procura, através do turismo e dos emigrantes.
A cotação do borrego até 15 Kg de PV é mais elevada que o de 16-28 Kg PV, sobretudo nos mercados da Guarda e Cova da Beira. O mercado de Castelo Branco é influenciado pelo do Alentejo, com uma oferta dirigida aos grandes centros consumidores de Lisboa e Porto. Na Cova da Beira e na Guarda, a formação de preços é ditada pela procura local e consequentemente dirigida para o consumo local.
As ovelhas de refugo são abatidas após uma vida produtiva média de 6-8 anos.
Com o encerramento dos matadouros e das Casas de Matança da Região (cerca de duzentas no distrito de Castelo Branco), o circuito de comercialização simplificou-se, sobretudo o circuito entre o abate e o consumidor. Existem negociantes regionais e inter-regionais, para além da presença de Espanhóis com elevado grau de intervenção no mercado.
Entre os caprinos, a carne é em cerca de 75% de cabrito, com peso médio de carcaça entre 6 e 8 Kg, abatidos normalmente aos 70 a 80 dias de vida.

3.10.2 Leite e Queijo

Objectivamente, a produção regional de pequenos ruminantes destina-se à produção de leite e de queijo. As potencialidades da produção de queijo decorrem de um efectivo pecuário numeroso, da qualidade do queijo produzido, da existência de mercado para este tipo de produto e da perspectiva de
desenvolvimento acelerado do sector em função da criação da Região Demarcada de Queijos da Beira Baixa e da Sub-Região Demarcada de Queijos de Castelo Branco (Decreto Regulamentar n.º 22/89, de 25 de Maio) (Figura n.º 10).

Figura n.º 10 – Região demarcada de queijos da Beira Baixa e Sub-Região Demarcada de Queijos de Castelo Branco

As dificuldades de produção estão associadas às limitações da raça Merino da Beira Baixa, à carência de mão de obra na região (resultado do forte desenvolvimento nos últimos anos do sector secundário), à heterogeneidade do queijo produzido (com implicações a nível de mercado) e à complexidade dos circuitos de comercialização.

São produzidos três tipos de queijo, o Queijo de Castelo Branco, o Queijo Amarelo e o Queijo Picante, com características que resultam fundamentalmente do tipo de leite utilizado e da tecnologia de fabrico (Decreto Regulamentar n.º 22/89):
- O Queijo de Castelo Branco (Figura n.º 11 - A) é um queijo curado de pasta semidura ou semimole, ligeiramente amarelado com alguns pequenos olhos, obtido por escoamento lento da coalhada, após coagulação do leite cru de ovelha, estreme, por acção de uma infusão de cardo (*Cynara cardunculus*, L.), com um teor de humidade de 54 a 69 %, referido ao queijo isento de matéria gorda, e com um teor de gordura de 45 % a menos de 60 %, referido ao resíduo seco. A forma é a de um cilindro (prato), regular, com abaulamento lateral e ligeiro na face superior, sem bordos definidos. As dimensões admitidas são de 12 a 16 cm de diâmetro e de 5 a 8 cm de altura. A maturação deve ter como condições de ambiente, uma temperatura de 8 a 14 ºC, uma humidade relativa entre 80 a 90 %, durante um tempo mínimo de 40 dias, com um coeficiente de maturação mínimo de 38. Este queijo, ao contrário dos outros dois, só pode ser produzido na denominada Sub-Região Demarcada do Queijo de Castelo Branco, abrangendo parte dos concelhos de Castelo Branco e de Idanha-a-Nova;

Figura n.º 11 – Queijo Amarelo (A) e Queijo de Castelo Branco (B)

- O Queijo Amarelo da Beira Baixa (Figura n.º 11 - B), é um queijo curado de pasta semidura ou semimole, obtido de leite de ovelha ou ovelha e cabra, com
um teor de umidade de 54 a 69 %, referido ao queijo isento de matéria gorda, e com um teor de gordura de 45 % a menos de 60 %, referido ao resíduo seco. A forma é um cilindro baixo (prato), regular com ligeiro abaulamento lateral e bordos definidos. As dimensões admitidas são de 12 a 16 cm de diâmetro e 3 a 5 cm de altura. A maturação decorre durante um período idêntico ao anterior, a uma temperatura entre 10 e 18 ºC, uma humidade relativa entre 50 a 70 %. Este queijo, como o seguinte, pode ser produzido numa vasta área que engloba quase todo o distrito de Castelo Branco, com exceção de algumas freguesias do concelho da Covilhã;

- O Queijo Picante da Beira Baixa (Figura n.º 12), é um queijo de pasta dura ou semidura, branco sujo a acinzentado, sem olhos ou pequenos olhos irregulares, obtido por escoamento da coalhada, após a coagulação de leite de ovelha ou cabra, estreme ou de mistura, por acção de coelho animal, com um teor de umidade de 49 a 63 %, referido ao queijo isento de matéria gorda, e com um teor mínimo de gordura de 35 % a menos de 60 %, referido ao resíduo seco.

![Figura n.º 12 – Queijo Picante](image)

A forma é um cilindro baixo (prato), regular, com faces direitas e lisas, com bordos definidos, aroma e sabor activos e característicos, sabor isento e acentuadamente picante. As dimensões são de 10 a 15 cm de diâmetro, 3 a 5 cm
de altura, e um peso de 0,4 a 1 kg. A maturação ocorre a uma temperatura de 10 a 18 ºC, com uma humidade relativa de 70 a 80 %, durante um tempo mínimo de 120 dias.

Os queijos Amarelo e Picante, podem ser curados integralmente pelo produtor, seguindo depois um circuito de comercialização idêntico ao anterior. No entanto, a maior parte é comercializada com uma cura incompleta (8 dias), predominantemente para intermediários da região que completam a maturação. A comercialização destes queijos é feita na região de Lisboa, onde o Queijo Picante é consumido como aperitivo.

As cotações ao produtor derivam fundamentalmente da relação oferta/procura e da qualidade do produto. A procura do Queijo de Castelo Branco é normalmente superior à oferta, atingindo-se preços da ordem de 1800$/00 e 2000$/00/Kg. Esta pressão da procura normalmente afecta a qualidade, uma vez que o queijo acaba por ser vendido antes do termo do período de maturação. A qualidade deriva ainda da época do ano, como resultado da variação observada nas pastagens e do ciclo reprodutivo das ovelhas.

No que diz respeito ao Queijo Amarelo, a sua cotação ao produtor varia em média entre os 850$/00 e 1200$/00/Kg. Quando vendido aos 8 dias a intermediários que completam a maturação, a cotação ronda os 600$/00/Kg.

Segundo informação não publicada obtida na D.R.A.B.I., no final de 1999, haviam 7 queijarias licenciadas da classe C (transformam entre $5x10^4$ e 10^6 litros de leite/ano) na área de acção da Ovibeara, 4 das quais no concelho de Idanha-a-Nova e 3 no de Castelo Branco. Neste concelho, um total de 17 queijarias da classe D (transformam menos de 50000 litros de leite/ano) estavam licenciadas, no concelho de Idanha-a-Nova apenas 1 queijaria, estando 3 queijarias licenciadas em Vila Velha de Rodão (Decreto Regulamentar n.º 25/93, de 17 de Agosto e Portaria n.º 744-B/93, de 18 de Agosto).
No que se refere às queijarias não licenciadas, da classe C, são 9 em Castelo Branco, 7 em Idanha-a-Nova e 2 em Vila Velha de Rodão. Em relação às da classe D, registam-se 15 em Castelo Branco e 10 em Idanha-a-Nova.

3.10.3 Lã

Tradicionalmente considerado como um subproduto da actividade ovina, foi um elemento importante na economia das explorações da região, chegando a atingir valores de 4000$00 por arroba. Este valor gerava um rendimento/velo (ovelha) de cerca de 500$00, tendo em conta que o peso médio dos velos é de 1,900 kg. Este peso médio dos velos pode variar de 2,5 a 3,2 kg, nos machos, e de 1,5 a 2,5 kg, nas fêmeas (Sobral et al., 1987).

Os preços sofreram uma evolução de 1886$00 por arroba de lã merina, em 1996, para 3378$00, em 1997, nos leilões. As compras directas em Castelo Branco, no ano de 1997, de lãs merino atingiram um valor de 7.253.520$00, e de 14.287.796$00 nos leilões (Martins Abrantes, 1997). O preço praticado, em 1997, variou de 120$00/kg (1800$00/arroba) no mercado ambulante, a 220$45/kg (3306$00/arroba) nos leilões, em Castelo Branco.

As lãs do Merino da Beira Baixa são das mais finas do país, mas as raças exóticas que têm sido introduzidas nos rebanhos, com o intuito de melhorar a produção de leite ou aumentar o peso dos borregos, têm descaracterizado as lãs produzidas na região, conduzindo a valores de mercado mais baixos.
CAPÍTULO 4

O CONTROLO E ERRADICAÇÃO DA BRUCELOSE NOS PEQUENOS RUMINANTES. AS FRAGILIDADES DO SISTEMA DE INFORMAÇÃO.

4.1 Evolução histórica

As primeiras medidas de combate à brucelose animal aplicadas com o figurino de “Campanhas de Saneamento”, foram tomadas em Portugal no ano de 1938, integradas na “Campanha Nacional de Saneamento da Tuberculose e da Brucelose Animal”, e limitadas aos bovinos de castas leiteiras.

Até 1971, a campanha baseou-se no diagnóstico serológico da doença, seguido do abate dos animais seropositivos. Em 1972, foi introduzida a vacinação de animais jovens, entre os 4 e os 8 meses de idade, com a vacina Rev.1.

Esta estratégia baseava-se no pressuposto de que a taxa de refugo adicionada à taxa de substituição dos rebanhos seria de 10 a 15 % por ano, e como tal, era operacional imunizar a totalidade dos rebanhos num horizonte temporal de 5 a 10 anos. Esta medida permitiria reduzir progressivamente a população de pequenos ruminantes susceptíveis, conduzindo, por sua vez, a uma diminuição da incidência de brucelose em Humanos, quer por contacto directo com produtos infectantes.
quer pela ingestão de produtos de origem animal, nomeadamente pela ingestão de leite cru e/ou de queijo produzido a partir do leite cru.

Porém, a estratégia não se revelou eficaz, sobretudo devido à escassez de recursos materiais e humanos. A reduzida taxa de vacinação anual intra-rebanho foi apontada como um factor determinante para a baixa eficácia da medida a nível do “terreno” (Corrêa de Sá e Travassos Dias, 1994).

Com a entrada de Portugal na CEE, face à persistência de brucelose nos efectivos de ruminantes nacionais que constituía um entrave à livre circulação de ovinos e caprinos, assim como à venda de produtos provenientes destas espécies animais, foi apresentado e aprovado pelo Comité Veterinário Permanente da U.E., em 1990, o “Plano de Erradicação da Brucelose em Pequenos Ruminantes” (Decisão da Comissão 91/217/CEE, de 26 de Março).

O plano consistia num conjunto de medidas de natureza sanitária definidas nas “Bases Programáticas e Plano de Erradicação”, nomeadamente:

- Obrigatoriedade da declaração da doença (Decreto Lei n.º 39209, de 14 de Maio de 1953);
- Controlo sorológico obrigatório de ovinos e caprinos, não vacinados, duas vezes por ano;
- Vacinação de fêmeas jovens, entre os 3 e os 6 meses de idade, com a vacina viva Rev.1;
- Marcação indelével a fogo e abate sanitário dos animais seropositivos;
- Possibilidade de morticínio dos efectivos com prevalência elevada, vazio sanitário e repovoamento controlado;
- Pagamento de indemnizações compensatórias;
- Controlo da circulação animal;
- Classificação sanitária dos efectivos e de áreas geográficas.

Recorreu-se então a um financiamento por um período de 3 anos, disponibilizado para a erradicação da brucelose nos pequenos ruminantes, nos países da bacia do Mediterrâneo (Decisão 90/242/CEE, de 21 de Março). Cada País, foi responsabilizado no sentido de adaptar as estruturas de sanidade animal existentes, com vista a acelerar a erradicação da zoonose.

Na tentativa de aumentar a eficácia dos programas de controlo e de erradicação da brucelose animal, e considerando como fundamental a necessidade de uma participação activa e consciente dos produtores e das suas associações na luta contra as doenças transmissíveis, o Estado Português passou a assumir um papel de coordenação e controlo, transferindo os serviços operacionais para os Agrupamentos de Defesa Sanitária (A.D.S.), criados em 1986 (Portaria n.º 63/86, de 1 de Março e Portaria n.º 102/88 de 12 de Fevereiro, revistas pela Portaria n.º 809-G/94, de 12 de Setembro). Os A.D.S. tinham como objectivo a execução de programas de saúde animal, nomeadamente:

- Assegurar o controlo sanitário das explorações pecuárias dos associados e de todos os outros criadores inseridos na área geográfica de intervenção;
- Prevenir e combater as doenças transmissíveis através das necessárias medidas de higiene e de profilaxia;
- Assegurar a realização da identificação animal e do registo de explorações pecuárias na sua área de intervenção;
- Melhorar as condições higio-sanitárias das explorações;
- Promover acções de formação e de informação em temáticas sanitárias e do bem estar animal.

Inicialmente, o programa dos A.D.S. foi definido para um período de 8 anos, sendo de imediato aprovado o orçamento para os três primeiros anos. A partir do 3º ano de funcionamento, as despesas seriam partilhadas com os criadores, de
forma crescente até ao sexto ano de execução do programa, altura em que participariam em 20% do total das despesas.

Posteriormente, a Portaria n.º 1088/97, de 30 de Outubro (revista pela Portaria 68/99, de 28 de Janeiro), revogou a Portaria n.º 809-G/94, aprovou o Regulamento de Constituição, Funcionamento e Organização dos Produtores Pecuários (O.P.P.), para a Defesa Sanitária dos Ruminantes. Com esta alteração, pretendeu-se reforçar as acções de prevenção, controlo e vigilância epidemiológica que permitam a manutenção do estatuto de indemnidade que progressivamente se vá alcançando, na perspectiva de que o conceito de “trocas comunitárias” venha a ser substituído pelo de “colocação no mercado”.

As O.P.P. mantiveram os mesmos objectivos epidemiológicos dos A.D.S., mas passaram a participar no funcionamento e na manutenção do sistema de vigilância epidemiológica dos efectivos pecuários.

As normas técnicas regulamentares das acções de luta contra a brucelose animal, numa perspectiva de erradicação foram definidas pela Portaria n.º 1051/91, de 15 de Outubro. Por sua vez, a Portaria n.º 233/91, de 22 de Março, e Portaria 427/91, de 24 de Maio, alteradas posteriormente pela Portaria n.º 3/95, de 3 de Janeiro, definiram as condições e normas de classificação de efectivos em relação aos efectivos de pequenos ruminantes, assim como a classificação epidemiológica de áreas relativamente à brucelose nestas espécies animais.

4.2 Avaliação da informação gerada pelas campanhas de saneamento

Para avaliar o programa de controlo e erradicação da brucelose, foi construída uma base de dados no programa informático EPI-Info, versão 5.0 (Dean et al., 1990), com base num registo individual por produtor, por intervenção sanitária e por ano, constando os seguintes dados:

- Identificação do proprietário (nome e número de produtor);
- Localização da exploração, por concelho, por freguesia e nome do local da exploração;
- Campo destinado a distinguir os rebanhos saneados pela primeira vez;
- Número de animais e estratificação, por sexo e idade;
- Espécie animal (ovino, caprino ou mistos). No caso de se tratar de rebanho misto, criou-se um campo para diferenciar os ovinos dos caprinos, e a percentagem de ambas espécies no rebanho;
- Rebanhos sem macho, ovinos e caprinos, em caso de rebanho misto;
- Datas do saneamento, do resultado da análise, da marcação de animais reagentes (seropositivos) e do abate desses animais;
- Número da colheita de sangue, durante o ano em curso;
- Número de animais positivos e negativos às diferentes provas serológicas;
- Número de animais reagentes, de animais reagentes marcados e de animais reagentes abatidos;
- Classificação sanitária obtida no ano anterior e classificação sanitária no final do ano em curso;
- Número de INGA e quota atribuída;
- Observações.

4.2.1 Identificação das explorações

Segundo a Portaria n.º 1051/91, de 15 de Outubro, os Serviços Veterinários Regionais devem manter um registo actualizado das explorações que se dedicam à criação e comercialização de ovinos e caprinos, cabendo ao A.D.S. (Portaria
63/86, de 1 de Março), a manutenção de uma listagem dos criadores associados, localização das respectivas explorações e respectivos efectivos pecuários.

A cada produtor pecuário é atribuído um Número de Produtor, pela D.R.A. ou pela O.P.P.. É também atribuída, apenas pela D.R.A., a Marca de Exploração a todas as explorações com mais de 10 fêmeas reprodutoras, sendo concedido um código de exploração quando a exploração tem um efectivo de número inferior, e após o acto de saneamento (Portaria n.º 121/92, de 26 de Fevereiro).

Alguns produtores possuem mais do que um número de produtor e mais do que uma marca de exploração, considerando que possuem mais do que uma exploração, completamente independentes, ficando sob a responsabilidade do Médico Veterinário executor da O.P.P., a garantia dessa independência.

A identificação das explorações inicia-se a partir da folha de intervenção sanitária (folha de campo), sendo o nome do produtor registado no P.I.S.A. e atribuído o respectivo número de produtor e a marca da exploração, no caso de ter sido a primeira intervenção feita nessa exploração. No caso de não ser a primeira vez que o rebanho é intervencionado, os Médicos Veterinários Assistentes preenchem o campo destinado ao número de produtor na folha de campo, a partir de uma listagem de produtores fornecida pela O.P.P..

No entanto, no preenchimento da folha de campo e posteriormente no respectivo registo de dados no P.I.S.A., verifica-se por vezes algumas situações que induzem em erro a posterior identificação do proprietário, originando novos produtores que, de facto, não existem:

- A letra ilegível de alguns Médicos Veterinários Assistentes;
- O recurso a abreviaturas, a troca sequencial dos nomes e nomes incompletos;
- Erros de escrita, quer no preenchimento do nome na folha de campo, quer durante a informatização dos dados;
- Troca do sexo do proprietário, sobretudo durante o processo de informatização dos dados;
- As mudanças de proprietário, nomeadamente de pai para filho, de marido para a mulher e vice-versa, mesmo quando referenciadas nas “observações”, não são registados, mantendo-se o nome inicial. Neste caso, a colheita de sangue
seguinte é feita em nome do produtor anteriormente referenciado como o novo proprietário nas “observações”, levando a que seja considerado como novo produtor. É um erro que surge associado ao facto de ser apenas um operador a registar os dados de todos os O.P.P. da Região Agrária;

- Produtorres com o mesmo nome, pertencendo à mesma freguesia ou mesmo a freguesias diferentes, são considerados nalguns casos como a mesma pessoa. Por vezes, é possível distingui-los pelo número de animais saneados, tipo de rebanho e pela data da colheita de sangue. No entanto, o registo é feito como sendo apenas um produtor;

- Existência de vários produtores com o mesmo nome, geralmente um nome próprio e um apelido, com a atribuição de novo número de produtor, ou eventualmente é escolhido um dos nomes referenciados nas listagens. Acontece sobretudo em relação a produtores com efectivos muito pequenos, não sendo possível identificar qual é efectivamente o produtor em causa, através da folha de campo;

- Produtores que apresentam o mesmo nome, num ano referenciados a um local de exploração, no ano seguinte, a outra parcela da exploração ou a outra freguesia, sendo-lhes atribuído novo número de produtor;

- Produtores que aparecem registados como duas pessoas diferentes, quando o efectivo é dividido em caprino e ovinos, por duas folhas de campo;

- O número de produtor atribuído no acto de registo no P.I.S.A., não coincide com o inscrito na folha de campo. Em alguns casos, trata-se de produtores com rebanhos de média e grande dimensão e cujos rebanhos são intervencionados todos os anos;

- O número de produtor atribuído na folha de campo não corresponde ao indivíduo inscrito nas listagens do P.I.S.A. com esse número de produtor. Alguns destes casos referem-se a produtores que por algum motivo, eventualmente associado à atribuição de subsídios, informaram os Serviços Oficiais da mudança de proprietário mas, no momento do saneamento, não informam o Médico Veterinário Assistente dessa mudança, sendo o seu nome que figura na folha de campo;
- Dois casos, de produtores diferentes, que tinham o mesmo número de produtor;
- Produtores, cuja folha de campo certifica o acto de saneamento, mas o seu registo não aparece nas listagens;
- Produtores, cujo registo de saneamento aparece nas listagens oficiais, mas não aparece a respectiva folha de campo;
- Produtores com um número de animais mais ou menos elevado, saneado pela primeira vez, sem qualquer referência à proveniência dos animais.

A legislação obriga à manutenção do registo actualizado das explorações, durante os 3 anos seguintes, após o desaparecimento dos animais (Portaria n.º 1051/91, de 15 de Outubro, Portaria n.º 243/94, de 18 de Abril e Decreto Lei n.º 338/99, de 24 de Agosto), e onde deve constar a marca utilizada para identificação da exploração, assim com a respectiva classificação sanitária. Face aos rebanhos anualmente saneados na região, a actualização da mesma não deve estar a ser feita, já que uma listagem de produtores fornecida pelo P.I.S.A., produz mais de 6000 nomes de produtores. Uma proporção não negligenciável destes 6000 produtores resultam dos erros atrás referenciados.

Por sua vez, a classificação sanitária não deveria permanecer na base de dados como classificação actual, porque há casos de produtores que cessam a sua actividade, para algum tempo mais tarde a retomarem, mantendo assim, as respectivas classificações sanitárias.

Assim, não sendo feita a validação dos dados, nomeadamente através do cruzamento de informação com outras bases de dados, não é raro verificar-se nas listagens do P.I.S.A., que um mesmo produtor possa possuir mais do que um número de produtor, em alguns casos até três ou quatro números. Naturalmente que as consequências são graves, nomeadamente no que se refere à classificação sanitária dos rebanhos. Detectámos casos em que um mesmo produtor era classificado como B21 (Infestado), B22 (Suspeito) e B3 (Indemne) em simultâneo, comprometendo a gestão sanitária dos rebanhos da região.

Muitos dos erros referidos foram detectados através do cruzamento da informação contida nas folhas de campo, com os dados do prémio aos produtores de ovinos e
caprinos, nas listagens do INGA. Infelizmente, este Organismo fornece apenas o Número de INGA, o Número de Contribuinte, o Nome do Proprietário e a Quota de ovinos e caprinos. Após a consulta de várias listagens, a partir de 1987, foi construída uma base de dados. Com a posterior consulta aos dados do A.D.S., foi possível corrigir alguns dos erros.

O Decreto Lei 245/96, de 20 de Dezembro, refere que os criadores de gado que estejam dispensados de possuir o livro de existências, terão de entregar, durante o mês de Dezembro de cada ano, nos Serviços Regionais de Agricultura da área da respectiva exploração, a relação das existências de gado que possuírem. Se no caso dos suinicultores, a declaração de existências dos efetivos suínos é feita duas vezes por ano, em relação aos pequenos ruminantes não tem sido cumprida a legislação.

A obrigatoriedade de identificação nas folhas de campo, do número de contribuinte e/ou do Bilhete de Identidade do produtor em causa, facilitaria a sua identificação. Se o problema, em relação aos grandes rebanhos, e mesmo em relação aos associados da O.P.P. não é crítico, no caso das pequenas explorações infectadas, as Autoridades Sanitárias terão sérias dificuldades em localizar o detentor dos animais.

Este problema deve ser resolvido, apesar de nestas explorações familiares a incidência da brucelose ser muito baixa. No entanto, face ao facto das produções obtidas nestas explorações se destinarem ao autoconsumo, a não identificação de produtores e animais poderá ter consequências graves na Saúde Pública.

A identificação das explorações constitui, inequivocamente, um dos pilares para o sucesso do programa de erradicação. A atribuição de marcas de exploração pode ser uma medida importante. No entanto, os problemas referidos na atribuição dos números de produtor reduzem a eficácia desta medida. Uma vez que as marcas auriculares dos animais devem ter inscritas a marca de exploração, poderão aparecer várias marcas de exploração entre os animais de uma mesma exploração, se forem utilizadas as marcas anteriormente atribuídas, se não for estabelecida a relação entre proprietário e marca de exploração. Se tal acontecer, face à legislação actual, poderão ser levantados problemas ao produtor sem que o mesmo tenha contribuído para isso.
4.2.2 Localização das explorações pecuárias

A localização das explorações pecuárias é determinada pelo registo feito na folha de campo pelo Médico Veterinário Assistente. Este refereçia a exploração, geralmente, ao local de colheita.

Não raramente, a colheita ocorre em vários locais, inclusive em mais de uma freguesia, não sendo esses locais registados na folha de campo. Noutros casos, a localização da exploração é feita em relação ao centro de lavoura ou em relação ao local de residência do proprietário, que muitas vezes reside noutra freguesia, e mesmo noutra concelho. Em algumas pequenas freguesias e no limitrofe de outras, é difícil definir com exactidão em que freguesia está inserida uma determinada exploração.

De uma maneira geral, a localização da exploração é registada no P.I.S.A. pelos dados da folha de campo referentes à primeira intervenção feita nessa exploração. Após esta primeira colheita, qualquer outra referência que seja inscrita na folha de campo é ignorada. Em alguns casos, o local da exploração muda, inclusive de freguesia, mas os dados não são actualizados. Noutros, pelos dados fornecidos, é possível verificar que o produtor tem parcelas em vários locais, inclusive em mais do que uma freguesia.

Existem também, explorações cuja localização é referenciada a uma freguesia da área de acção da O.P.P. - Ovibeira, mas na verdade localizam-se fora dos limites da O.P.P. em causa.

Em relação aos produtores não associados na O.P.P., a maioria dos seus efectivos é saneada num local de concentração, definido em Edital. Nestes casos, o local da exploração referenciado é a freguesia.

Quando uma exploração se estende por mais de uma freguesia, ou quando a freguesia não corresponde à localização correcta da exploração pecuária, o cálculo da prevalência da infecção nessas freguesias é distorcido, com eventual reflexo nas medidas sanitárias a implementar. No primeiro caso, o rebanho e seus animais são referenciados a uma das freguesias, no outro, a uma freguesia onde os animais não estão.
É fundamental que se possa referenciar espacialmente as explorações pecuárias, por forma a permitir uma gestão sanitária dos efectivos animais da região, e a definição de estratégias de actuação específicas a determinados locais ou a determinada exploração, no âmbito do Plano Individual de Saúde Animal.

4.2.3 Tipo de rebanho (espécie animal), número, sexo e idade dos animais saneados

A folha de campo permite o registo do número de animais saneados, diferenciados em adultos e jovens, e ainda, por sexo. Se o produtor tiver um efectivo com ovinos e caprinos, são feitas duas folhas de intervenção, uma por espécie.

Analisando a composição do rebanho dos produtores, ao longo dos vários anos de campanha, através dos dados registados nas folhas de campo e em alguns casos, em relação à quota do prémio à produção de ovinos e caprinos detida, e ainda pela observação do desempenho de algumas brigadas de saneamento, foi possível observar algumas situações que merecem reflexão:

- O número de animais inscritos é discrepante em relação ao número de animais saneados, apesar de haver diferenças entre a elegibilidade para o prémio e para o saneamento;
- O tipo de rebanho de um determinado produtor varia de colheita para colheita, sendo de ovinos numa das colheitas, de caprino ou misto noutra colheita. Todas as combinações são possíveis de ser detectadas, entre os produtores com rebanhos submetidos a saneamento, ao longo dos anos. Por vezes, é mesmo difícil determinar qual a espécie animal efectivamente presente na exploração, comparando os dados fornecidos pelas folhas de campo, referentes às sucessivas intervenções a que o rebanho é sujeito;
- Muitas vezes, o número de animais de uma determinada espécie é relativamente pequeno em relação aos animais de outra espécie, levando a que sejam registados como sendo de uma só espécie animal. A obrigação do preenchimento de duas folhas de intervenção, uma por espécie, vulgarizou
este modo de actuação. Desta forma, não é credível referenciar os resultados obtidos a uma espécie animal. Recorrendo a um sistema de validação dos dados registados, que permita comparar a espécie animal referenciada nas várias colheitas efectuadas em cada exploração, foi possível esclarecer alguns casos onde as espécies presentes variam de uma colheita para outra, mas nunca todos os casos. Sobretudo, não permitirá determinar o número real de ovinos e caprinos na exploração, nem estabelecer uma relação entre as marcas auriculares atribuídas e cada uma das espécies animais em causa. Não sendo efectuada, em termos práticos, a diferenciação das espécies animais no acto do preenchimento das folhas de campo, e atendendo à maior ou menor receptividade das espécies animais às diferentes espécies de Brucella, seria preferível diferenciar os rebanhos em ovinos, caprinos e mistos. A legislação em vigor não diferencia as espécies animais, ovinos e caprinos, considerando apenas pequenos ruminantes, e a classificação sanitária do efectivo não é diferente para uma espécie animal em relação a outra que coabita no mesmo espaço, e pertence ao mesmo produtor (Portaria n.º 1051/91, de 10 de Outubro, e Portaria 3/95, de 3 de Janeiro);

- Nem sempre é referenciado na folha de campo o número de jovens nem o número de machos existentes no rebanho. São muitos os casos em que nos animais submetidos ao saneamento, mesmo nos rebanhos de grande dimensão, são registados apenas fêmeas adultas ou fêmeas e machos adultos;

- Por vezes, os números registados na folha de campo por sexo, e se adultos ou jovens, são obtidos por aproximação;

- Sobretudo quando se trata de rebanhos pequenos, de uma ou outra espécie, é comum não haver qualquer referência à existência de machos: jovens ou adultos;

- No caso de rebanhos mistos, é comum que em relação a uma das espécies animais, não seja feita qualquer referência à existência de machos, mesmo quando se trata de efectivos de média dimensão;

- Comparando o número de animais saneados periodicamente por produtor, é possível verificar uma grande flutuação. Naturalmente que estas alterações podem ser explicadas, por exemplo, pela taxa de substituição feita a partir do
próprio rebanho, com o aproveitamento de todas as borregas para a reprodução, pelo refugo de animais, pelo aparecimento de patologias diversas com mortalidade elevada, afectando um número relevante de animais, ou pelo abate sanitário de animais. No entanto, algumas das diferenças observadas, mereciam uma investigação, sobretudo no que se refere à compra e venda de animais. Também nestes casos, há Médicos Veterinários Assistentes que referenciam a compra ou venda de animais, por parte do produtor, na folha de campo. No entanto, estas observações não são registadas, uma vez que o P.I.S.A. não tem um campo específico para este tipo de dados.

Face ao exposto, torna-se difícil uma avaliação refinada sobre a evolução da brucelose, quer por sexo quer por grupos etários.

A comparação do tamanho dos efectivos que se apresentam a cada acto de saneamento, e o cruzamento de informação, nomeadamente com a quota atribuída no âmbito do prémio, poderia facilitar o controlo do movimento animal. Da mesma forma, as brigadas de fiscalização do Ministério da Agricultura, poderiam servir-se dessa informação para detectarem possíveis prevaricadores. No entanto, o cruzamento de tal informação só será possível se houver um sistema de informação fidedigno, actualizado e compatível com as diversas bases de dados, o que ainda não existe de momento.

A Portaria n.º 243/94, de 18 de Abril, refere que os detentores de ovinos e caprinos devem manter um registo que contenha, pelo menos, o número total de ovinos e caprinos, presentes na exploração em cada ano, numa data a fixar pela Autoridade Competente. Mais recentemente, o Decreto Lei n.º 338/99, de 24 de Agosto, que revogou a Portaria n.º 243/94, veio Regulamentar a Identificação, o Registo e a Circulação animal, obrigando os detentores de ovinos e caprinos a manter um registo em que se indique o número de ovinos e caprinos presentes na exploração (“...um assento actualizado do número de fêmeas na exploração com mais de 12 meses de idade ou que tenham parido antes dessa data e as deslocações de ovinos e caprinos – número de animais envolvidos na entrada e saída, consoante o caso, a origem e o destino dos animais e a data das deslocações.”).
Infelizmente a idade e o nível de instrução dos produtores da região condicionará a eficácia desta medida no controlo do efectivo e do trânsito animal, e limitará consideravelmente a qualidade dos dados. Para além de muitos não saberem ler nem escrever, a idade não lhes permite distinguir, em muitos casos, o que deve ser registado e como deve ser registado. Por outro lado, no modelo aprovado pelo Despacho n.º 17 735/99, de 10 de Setembro, em relação ao campo que se refere a “animais existentes”, os produtores têm sido instruídos no sentido de preencherem este campo com o número de animais à data de abertura do registo em causa, sendo apenas alterado no início de cada ano de exercício, e não actualizados mensalmente.

Este procedimento, resulta numa postura fiscalizadora pouco pedagógica. As contagens são feitas pelas brigadas de fiscalização, o que vem contrariar o espírito do legislador, que pretendeu separar a legislação fiscal da legislação veterinária. Desta forma, apesar de ser um documento de cariz sanitário, o objectivo da sua aplicação tem sido até agora desvirtuado, já que parece mais direccionado para a fiscalização da aplicação das medidas agro-ambientais.

Por outro lado, os dados inscritos no registo referido, apenas são passíveis de ser conhecidos, se e quando, a Autoridade Competente o exigir. Não existe qualquer tipo de informatização dos dados a nível oficial, não permitindo o cruzamento de informação. Qualquer conduta ilegal, em relação à compra e venda de animais, será detectada de forma casual, ou pelo menos tardivamente. A aplicação de sanções, previstas na legislação, não evitará elevados custos sanitários.

Sendo o Decreto Lei n.º 338/99, uma aplicação de Regulamentos (Regulamento (CE) n.º 820/97, de 21 de Abril, do Conselho, e os Regulamentos (CE), da Comissão, n.ºs 2628/97, 2629/97, e 2630/97, de 29 de Dezembro, e 484/98, de 27 de Fevereiro), face à legislação da União Europeia, só é aplicado aos efectivos animais que constem na lista de explorações referida (n.º 1 do Artigo 3.º, DO Capítulo I do Anexo). No entanto, os produtores que não submetem os seus animais às intervenções sanitárias, não são, como tal, abrangidos pela legislação, porque não existe uma fiscalização efectiva. Deste modo, qualquer sanção aplicada aos produtores da lista, poderá levá-los a optar por tomar a mesma atitude.
Vem-se verificando anualmente, uma redução no número de indivíduos detentores de quotas, tendo deixado de ser difícil de as obter, nos últimos dois anos. Isto é, passou-se de uma grande procura para um excedo de oferta, reflexo do abandono da actividade, que poderá agravar-se com a introdução desta legislação, principalmente, face à idade dos produtores e à fuga dos jovens para os centros urbanos.

4.3 Identificação animal

A identificação dos animais, até 1998, era feita no momento da colheita de sangue, por aposição no pavilhão auricular esquerdo de uma marca de plástico onde constava as iniciais “PT” e o número de série. Este número de série era transcrito para o tubo de colheita de sangue. Na folha de campo, ficava registado o primeiro e o último número da série utilizada.

As reacções de carácter inflamatório que as marcas auriculares originavam nas orelhas dos animais, levaram muitos agricultores a retirá-las, pouco tempo depois da sua aplicação. Uma nova intervenção sanitária implicava o corte das marcas ainda presentes, sendo substituídas por outras com outro número de série. Desta forma, tornava-se impossível estabelecer uma relação entre uma e outra marca, como refere a Portaria 243/94, de 18 de Abril.

Oficialmente, apenas são informatizados os números de identificação sanitária, dos animais cujo teste serológico decisivo classificou o animal como reagente ou infectado.

Actualmente, estes procedimentos mantêm-se, excepto que a marca auricular utilizada é considerada como definitiva, em conformidade com o Decreto-Lei n.º 338/99.

Esta marca, também de plástico, é aplicada a cada animal intervencionado pela primeira vez, sendo nela inscrita manualmente (Art.º 14, ponto 5 do Decreto-Lei n.º 338/99) a marca de exploração atribuída.

Este procedimento pretende assegurar um vínculo entre o animal e a exploração de origem. No entanto, é preciso considerar alguns aspectos:
- É obrigatória, a marcação dos animais, o mais cedo possível, e sempre antes de abandonarem os rebanhos (Portaria 243/94 e Decreto-Lei n.º 338/99). A marcação, onde consta a marca de exploração de origem, é da responsabilidade do detentor e presume-se que seja o detentor dos animais. As marcas a aplicar, são distribuídas e aplicadas de forma determinada pela Autoridade Competente. Até ao momento, não foi distribuída qualquer marca que possibilite ao produtor, marcar os seus animais, antes da saída da exploração. A marca que tem sido utilizada é a marca de identificação relativa às medidas oficiais de profilaxia médica ou sanitária, colocada durante a primeira intervenção sanitária a que o animal é submetido;

- A legislação não faz referência à existência de marcas transitórias, pelo que um animal apenas aparece referenciado, em relação à exploração de origem, desconhecendo-se possíveis passagens por outras explorações. Em termos sanitários, e nomeadamente no que se refere à brucelose, este aspecto assume particular importância. O recurso a marcas auriculares transitórias de cores diferentes, permitiria um melhor controlo sanitário dos animais;

- As marcas de exploração são constituídas por um código alfanumérico de cinco caracteres. O primeiro caractere identifica a Direcção Regional de Agricultura (M) e o segundo indica o concelho onde se localiza a exploração: Castelo Branco (U), Vila Velha de Rodão (R) e Idanha-a-Nova (V). Sendo obrigatório a inscrição manual da marca de exploração, por baixo do código de identificação sanitária inscrito na marca auricular, a possibilidade de erro é grande, sobretudo em rebanhos grandes, face à facilidade de se confundir o U com o V, e vice-versa. Por outro lado, como na Beira Interior a aplicação das marcas auriculares se iniciou em 1998, existe em cada rebanho, um número significativo de animais cuja marca de exploração não está inscrita na marca auricular, por não ser obrigatório nessa altura;

- Em relação ao código de caracteres, referentes às marcas de identificação sanitária, são utilizados seis caracteres que identificam o animal. A série de números utilizados em cada rebanho não é sequencial, já que de uma intervenção para outra, a série muda. Este facto, induz erros na sua leitura e a erros de transposição na inscrição do número no tubo de colheita de sangue e
na folha de campo, com consequências evidentes, sobretudo na posterior detecção de animais seropositivos. Deveria considerar-se, a possibilidade de serem os produtores a identificar os seus animais, com marcas auriculares cuja marca de exploração viesse já inserida tal como a marca de identificação sanitária, sequenciada a partir do número 1, para todos os produtores. As empresas produtoras destas marcas seriam certificadas e credenciadas pela Autoridade Sanitária Nacional, enviando periodicamente a relação de marcas fornecidas por produtor;

- O registo oficial das marcas auriculares só é feito, como já referido, caso o animal correspondente seja considerado reagente ou infectado. Consequentemente, a única relação possível entre uma marca auricular e um animal, será através das folhas de campo;

- A aplicação de marcas auriculares, com a marca da exploração ou o código de exploração, nos rebanhos de pequenos produtores não associados da O.P.P., não deixará de trazer problemas, não só pelo que referimos em relação à identificação dos produtores, mas também no número de produtores que saneia anualmente animais pela primeira vez, sem marca de identificação sanitária atribuída.

- Nos rebanhos saneados em locais de concentração marcados por Edital, a aplicação de marcas auriculares definitivas e a necessidade de inscrever a marca da exploração manualmente, poderá condicionar a presença dos produtores nos locais.

A identificação animal constitui um problema de difícil solução, sendo, no entanto, necessário avaliar convenientemente a sua aplicação, por forma a garantir o sucesso das medidas que se vão tomando no âmbito do controlo e da vigilância das doenças transmissíveis nas populações animais.
4.4 Colheitas de sangue

Um dos aspectos mais importantes referenciados na legislação (Portaria n.º 3/95), diz respeito ao número de colheitas de sangue necessárias para subida de estatuto sanitário.

Em termos de registo, o P.I.S.A. não permite diferenciar o número que corresponde a cada colheita de sangue. Por outro lado, a legislação diferencia a colheita de sangue para saneamento, que é efectuada com o intuito de determinar a existência de infecção, e as duas colheitas de sangue negativas consecutivas, necessárias para a subida de estatuto sanitário.

Alguns rebanhos são submetidos a um saneamento parcial, devido à sua dimensão, ou porque precisam de comprar ou vender animais, ou ainda, porque estão divididos por várias parcelas. Desta forma, por vezes torna-se difícil determinar o número de colheitas efectuadas nesses rebanhos.

Não é raro, rebanhos evoluírem na classificação sanitária, apenas com uma colheita de sangue, e outros manterem a classificação sanitária ao longo dos anos, independentemente do número e do resultado das colheitas efectuadas.

Por outro lado, os rebanhos sem qualquer colheita de sangue, mantêm a classificação sanitária, mesmo quando durante anos, não se procede a qualquer intervenção sanitária nesse rebanho. Em 1998, registaram-se casos, em que rebanhos perderam a classificação sanitária e outros foram classificados como desconhecidos (B1). No entanto, não é claro o critério que regeu estas situações, uma vez que se mantêm cerca de 6000 produtores nas listagens oficiais, e apenas uma percentagem reduzida de rebanhos surgem sem classificação ou com classificação desconhecida.

Em 1997, a folha de campo foi alterada, sendo introduzidos campos destinados a distinguir o número de colheita de sangue correspondente, e se a colheita foi feita ao total dos animais ou parcialmente. No entanto, o P.I.S.A. não foi adaptado para permitir a introdução destes dados.

Consequentemente, muitos rebanhos são submetidos apenas a um saneamento anual, e apesar de terem cumprido o número exigido de duas colheitas consecutivas negativas exigidas pela legislação, o seu estatuto sanitário não é
alterado. Por outro lado, continua a não ser possível definir, se uma intervenção
diz respeito, ou não, à totalidade do rebanho.
Os prazos previstos na lei (Portaria n.º 3/95), em relação ao intervalo entre as
colheitas de sangue, não são cumpridos. Dificuldades de ordem financeira, forçam
à adopção de um sistema de duas colheitas em rebanhos infectados e uma colheita
nos restantes rebanhos.
Nos dois últimos anos, os rebanhos classificados como infectados (B21) têm
vindo a ser saneados, na sua maioria, pelo menos duas vezes por ano. No entanto,
os outros rebanhos, os critérios adoptados têm sido diversos:

- Há rebanhos indemnes (B3) que são sujeitos a mais de um saneamento anual,
 sem razão aparente;
- Os rebanhos suspeitos (B22) raramente são sujeitos a mais de uma colheita de
 sangue anual, dificultando o acompanhamento da evolução sanitária, e dessa
 forma impedir que possam atingir o estatuto de indenme de brucelose, de uma
 forma mais célere.

Importa também referenciar que os rebanhos dos produtores sócios da O.P.P. são
saneados anualmente, pelo menos uma vez, mas a colheita de sangue está
dependente do pagamento das quotas. Nos casos em que o sócio se atrasa no
pagamento das quotas, é suspenso da O.P.P. e considerado como não sócio até
que proceda à liquidação do valor devido, sendo dado conhecimento à Direcção
Regional de Agricultura.
Um aspecto que tem sido negligenciado, reporta-se ao facto de a Portaria 1051/91
considerar todas as explorações como suspeitas de brucelose durante o tempo que
medeia entre a colheita de sangue e a obtenção de resultados laboratoriais. Os
serviços veterinários regionais devem garantir que nesse período, a exploração
está sob vigilância sanitária, o movimento animal é interdito, de e para a
exploração em causa, e devem manter o rebanho sob vigilância até ter sido
eliminada a suspeita de brucelose.
4.5 Resultados dos testes serológicos

Em relação à brucelose nos pequenos ruminantes, duas provas têm sido utilizadas no diagnóstico serológico: o Rosa Bengala e a Fixação do Complemento. A estratégia de utilização destas duas provas variou ao longo dos anos. Até 1994, o Rosa Bengala era, praticamente, a única prova utilizada; o recurso à Fixação do Complemento era feito sem um critério definido.

Em 1995, a Fixação do Complemento começou a ser utilizada com maior frequência, sobretudo nos rebanhos infectados, uma vez que muitos dos animais reagentes tinham registos de vacinação. Em determinado momento, a Fixação do Complemento foi utilizada indiscriminadamente em todos os soros que entravam no laboratório. A disponibilidade de pessoal e de equipamento levou a enormes atrasos nas respostas, acabando por ser suspensa. Manteve-se, no entanto, a sua utilização nos rebanhos infectados.

Objectivamente, pretendia-se aumentar a especificidade da prova serológica e aumentar o valor predico positivo dos resultados obtidos. Desta forma, reduzia-se o abate de animais falsos-positivos.

Em 1996, a estratégia mudou, passando a prova de Fixação do Complemento a ser realizada nos soros de animais reagentes ao Rosa Bengala em rebanhos B3, e aos soros de animais Rosa Bengala negativos, pertencentes a explorações localizadas na freguesia da Lardosa (Castelo Branco). Esta freguesia tem uma incidência de brucelose superior às restantes freguesias da região. Pretendeu-se aumentar a sensibilidade da prova, optando por um aumento do valor predico negativo, e eliminar o mais rapidamente possível os falsos-negativos no Rosa Bengala.

No entanto, nos rebanhos desta freguesia, verificou-se que era realizado o Rosa Bengala e a Fixação do Complemento a todos os soros, e considerados reagentes apenas os positivos à Fixação do Complemento. A explicação para tal, residia no facto de ser mais simples para a rotina laboratorial, a realização das duas provas a todos os soros. No entanto, durante a informatização dos resultados, era suposto serem registado como reagentes, todos os positivos a uma das duas provas, o que não aconteceu. Nos anos seguintes, este erro foi colmatado, tendo ocorrido apenas em dois rebanhos, um em 1997 e outro em 1998.
Em 1998, a estratégia manteve-se, mas a Fixação do Complemento passou a ser aplicada também em todos os animais negativos no Rosa Bengala, dos rebanhos da freguesia do Rosmaninhal (Idanha-a-Nova).
Os resultados serológicos são inscritos no verso da folha de campo, assim como o número de identificação sanitária dos animais considerados reagentes à prova decisiva. Posteriormente, os dados são registados no P.I.S.A.. Periodicamente, a autoridade sanitária procede ao envio electrónico dos dados actualizados para a O.P.P., relativamente às intervenções executadas em cada uma das explorações.
Da análise dos registos efectuados, mereceram a nossa atenção, as seguintes falhas:

- Os resultados serológicos, registados em algumas folhas de campo arquivadas, não são referenciadas nos registos existentes no P.I.S.A., como se não tivesse existido a intervenção sanitária correspondente;
- Nem sempre as datas de saneamento registadas, correspondem às inscritas nas folhas de campo. Em alguns casos, a diferença de dias entre a data de saneamento e a data de análise registada é negativa;
- Apenas são registados os resultados da prova “decisiva”, nomeadamente os resultados positivos à Fixação do Complemento e as marcas auriculares dos animais correspondentes, mas não os resultados serológicos positivos ao Rosa Bengala e negativos à Fixação do Complemento. O historial serológico do rebanho e dos animais perde-se. Este aspecto, assume particular importância, uma vez que rebanhos com serologia positiva ao Rosa Bengala, não confirmados pela Fixação do Complemento, vem posteriormente a ser classificados como infectados. Além disso, não há qualquer participação dos Médicos Veterinários, Coordenador e Executor, na definição do que é, ou não, um reagente;
- Os resultados serológicos AAC ou os soros em quantidade insuficiente para a realização da Fixação do Complemento, independentemente do resultados verificado no Rosa Bengala, são registados como negativos. Apenas em 1998,
e em alguns rebanhos infectados (B21), os soros nessas condições, positivos à prova do Rosa Bengala, foram considerados positivos;

- Os sangues hemolizados são registados como prejudicados mas contabilizados como negativos na determinação da prevalência intra-rebanho. São poucos os casos em que é repetida a colheita de sangue. Nesses casos, o saneamento incidiu sempre sobre todo o rebanho, porque os produtores retiravam as marcas auriculares;

- Por vezes, verifica-se que o número de resultados positivos na serologia, registados no P.I.S.A., não corresponde ao número assinalado nas folhas de campo; normalmente é inferior ao que consta nas folhas de campo;

- Esporadicamente, alguns soros prejudicados são registados como reagentes, e vice-versa. No primeiro caso, os animais não são marcados nem abatidos, mas o erro mantém-se na base de dados; no segundo caso, nem sempre se procede à marcação e ao abate dos animais em causa;

- Registo de reagentes em rebanhos, em cuja folha de campo não aparece qualquer referência a resultados positivos na serologia;

- Rebanhos das freguesias da Lardosa e Rosmaninhal, em cuja folha de campo, não é feita pelo Laboratório qualquer referência à Fixação do Complemento.

Importa referir ainda que, segundo a Portaria 1051/91, todos os rebanhos inscritos no livro genealógico ou os produtores de reprodutores, devem obrigatoriamente submeter os carneiros inteiros com mais de 6 meses ao rastreio da epididímite contagiosa (*Brucella ovis*), sendo a prova de rastreio, e decisiva, a Fixação do Complemento.

Na região, funcionam dois livros genealógicos, o dos ovinos da Raça Merino da Beira Baixa (10 rebanhos inscritos) e o dos caprinos da Raça Charnequeira (14 rebanhos inscritos). Pelo menos um dos produtores da região tem como principal objectivo a venda de reprodutores. Outras raças, nomeadamente de ovinos, como a Awassi, a Assaf e a Lacaune, têm vindo a ser introduzidas nos rebanhos da região, e em relação à Raça Lacaune está a decorrer o processo para a criação do livro genealógico da raça, em Portugal. Em nenhum dos produtores com rebanhos
inscritos nos livros genealógicos é cumprida a lei, para além do problema já referido, da identificação dos soros pertencentes a machos.

4.6 Marcação e abate dos animais reagentes

A responsabilidade da marcação, recolha e abate dos animais, assim como a elaboração do processo de indemnização ao produtor, é da autoridade sanitária oficial (Portaria 147-A/97, de 28 de Fevereiro) não sendo registado no P.I.S.A.. Mediante protocolo, as D.R.A. podem delegar a execução destas operações em outras entidades de reconhecida idoneidade. Na área da D.R.A.B.I., as O.P.P. da região recusaram maioritariamente esta função. No entanto, a informação respeitante à marcação e ao abate dos animais deveria chegar à O.P.P., quer ao Médico Veterinário Coordenador quer ao Médico Veterinário Executor, permitindo deste modo, uma melhor gestão do estatuto sanitário de cada rebanho. Detectaram-se algumas discrepâncias entre o número de animais marcados e o número de abatidos. Estas discrepâncias aparecem, por vezes, pelo facto de se abaterem as crias de fêmeas serologicamente positivas; noutros casos, relacionam-se com perdas das marcas auriculares, permanecendo os animais nos rebanhos.

4.7 Abortos

O aborto, tem sido o principal sintoma associado à presença de brucelose nos rebanhos de pequenos ruminantes. A determinação da causa de aborto é uma importante fonte de informação para o diagnóstico da brucelose nas explorações pecuárias.

A Portaria 1051/91, refere que no caso da ocorrência de abortos, a exploração deve ser considerada como suspeita de brucelose, sendo introduzidas medidas que passam por um inquérito epidemiológico, vigilância sanitária, interdição à entrada e saída de animais, isolamento dos animais suspeitos e colheita de amostras para diagnóstico laboratorial.
Como os dados da folha de campo, referentes à ocorrência de abortos e assinalados pelo Médico Veterinário Assistente, não são registados no P.I.S.A., nem dão origem a nenhum mecanismo de actuação que esclareça a causa de aborto.

O Decreto Lei n.º 244/00, de 27 de Setembro, torna obrigatório a notificação, por parte do detentor dos animais, de todos os abortos ocorridos. O carácter obrigatório desta medida parece-nos desajustada e pensamos que levará os produtores a declararem a inexistência de abortos nas fêmeas das suas explorações.

4.8 Classificação sanitária dos rebanhos

Uma das principais inovações introduzidas pela aprovação do Plano de Erradicação das Bruceloses Animais para Portugal, pela Comissão das Comunidades Europeias, foi a aplicação das classificações sanitárias a nível de rebanho e de área, que permitissem num futuro próximo, classificar o país como indemne de brucelose.

A Portaria 233/91, posteriormente alterada pela Portaria n.º 3/95, estabeleceu as normas técnicas de execução relativas à classificação das explorações, considerando o estatuto sanitário dos efectivos ovinos e caprinos relativos à brucelose e a classificação epidemiológica de áreas. As normas técnicas de execução regulamentar das acções de luta contra as bruceloses animais na perspectiva da sua erradicação, foram estabelecidas na Portaria 1051/91.

Assim, em função do seu estatuto sanitário, e no que respeita à brucelose nos pequenos ruminantes, foi determinado classificar os rebanhos em:

- Classe B1 – Situação desconhecida;
- Classe B2 – Em saneamento;
 - Subclasse B2.1 – Infectado de brucelose;
 - Subclasse B2.2 – Suspeito de brucelose;
- Classe B3 – Indemne de brucelose;
- Classe B4 – Oficialmente indemne de brucelose

A classificação epidemiológica de área adopta os mesmos critérios e terminologia ao referido para os rebanhos, sendo a área epidemiológica uma zona geográfica contínua e definida administrativamente em função de características agrícolas, pecuárias e epidemiológicas idênticas, nas quais as estratégias de combate à brucelose deverão ser idênticas, podendo ser:

- Freguesia ou grupo de freguesias;
- Concelho ou grupo de concelhos;
- Área de agrupamento de defesa sanitária (O.P.P.);
- Zona de intervenção sanitária (ZIS);
- Parque Natural;
- Direcção Regional.

A responsabilidade na atribuição das classificações sanitárias é da autoridade sanitária regional, cuja homologação é feita pela autoridade sanitária nacional. Após a análise dos resultados serológicos, as classificações sanitárias são alteradas, não sendo no entanto claro, o critério seguido. Ao longo dos anos, vários despachos internos da responsabilidade da autoridade sanitária, procuraram definir critérios de classificação, sempre com base na legislação vigente.

Importa porém, começar por referir um aspecto de importância fundamental, no que respeita à classificação sanitária dos rebanhos: Sempre que uma classificação sanitária é atribuída a um rebanho, a anterior classificação (no caso de ter sido atribuída uma anteriormente) desaparece, assumindo o P.I.S.A. apenas a nova classificação. O histórico sanitário do rebanho não é compilado.

Até ao final de 1997, a única indicação que existia para além dos dispostos na lei, referia-se ao aparecimento de sorologia positiva nos rebanhos indemnes. Os soros positivos no Rosa Bengala eram submetidos à Fixação do Complemento, prova considerada decisiva. Em rebanhos com uma prevalência igual ou inferior a 1 %, os resultados seriam considerados como “falso-positivos”, e se o resultado na Fixação de Complemento fosse negativo, o animal permanecia no rebanho.
Em 1995, foi definido um critério, segundo o qual, os rebanhos com mais de 2% de positivos eram classificados como B2.1, entre 1 e 2% como B2.2 e menos de 1%, como B3.

Todos os critérios que foram sendo definidos pela autoridade sanitária, independentemente da sua aplicação na prática, nunca foram definidos com base no número de animais do rebanho. Este aspecto tem sido repetidamente negligenciado, sendo os rebanhos considerados como tendo o mesmo número de animais.

Todavia, sabe-se que à medida que o número de animais por rebanho aumenta, aumenta a sensibilidade da prova serológica e diminui a especificidade no agregado. A probabilidade de se classificarem animais erradamente como positivos aumenta, sobretudo, tendo em conta a prevalência observada na área em questão. Da mesma forma, diminui o valor predito positivo, condiando-se animais, rebanhos e produtores a um processo longo de controlo e de erradicação da brucelose nos pequehos ruminantes.

A classe B1 (desconhecidos) não era utilizada, em nenhuma circunstância, para classificar os rebanhos. Todos os rebanhos saneados pela primeira vez, sem resultados positivos, eram classificados na Classe B22. Defendemos que os rebanhos não submetidos ao controlo serológico devam ser classificados como desconhecidos (B1), e posteriormente submetidos a um critério definido para a determinação do seu estatuto sanitário. Entendemos, porém, que é necessário criar um sistema que assegure que todos os rebanhos sejam saneados, considerando a classificação de áreas epidemiológicas e a credibilidade do Programa de Erradicação da Brucelose Animal.

Por outro lado, é crucial que os rebanhos classificados como B1 ou B2.2 sejam intervencionados o maior número de vezes no mais curto espaço de tempo, dentro dos limites impostos pela lei, de forma a atingirem a classificação de indemne rapidamente. É preciso não esquecer que o programa aprovado visa a classificação de indemne para a área de acção da Ovibeira, e como tal, é necessário que 99% dos rebanhos estejam classificados como B3.

Em Maio de 1997, em Castelo Branco, após um fórum dedicado à brucelose nos pequenos ruminantes na área de acção do A.D.S. – Ovibeira, apareceram novos
critérios, entre os quais se assunia a existência de rebanhos classificados como B1. Foi aceite o princípio, utilizado na legislação para a subida de classe, sendo necessário pelo menos duas colheitas de sangue para definir o estatuto sanitário do rebanho. O Rosa Bengala foi considerado como decisivo para a determinação do abate sanitário de animais reagentes, sendo, nesse caso, o rebanho automaticamente classificado como infectado (B2.1).

No entanto, na prática, nos rebanhos classificados nas classes B1 e B21, a prova da Fixação do Complemento manteve-se como a decisiva para a determinação do abate sanitário dos animais reagentes.

Apenas nos rebanhos infectados inseridos em freguesias com prevalências elevadas (> 5 %), os animais com serologia negativa ao Rosa Bengala, passaram a ser submetidos à prova da Fixação do Complemento. Esta metodologia vinha a ser aplicada desde 1996, em alguns rebanhos da freguesia da Lardosa. Em 1998, foi alargada a todo e qualquer rebanho das freguesias da Lardosa (Castelo Branco) e do Rosmaninhel (Idanha-a-Nova). Os animais passaram, então, a ser considerados reagentes e abatidos, se positivos a uma das duas provas.

Com esta estratégia pretendeu-se aumentar a sensibilidade das provas serológicas utilizadas, procurando eliminar o maior número possível de reagentes, nos rebanhos dessas freguesias.

A prova de Fixação do Complemento passou a ser decisiva nos soros positivos à prova do Rosa Bengala, em rebanhos classificados como B2.2 e B3. Nestes últimos, passou a haver colheita de material no matadouro, por amostragem, nos animais reagentes, para exame bacteriológico. Nos casos de isolamento de Brucella, o rebanho é classificado como infectado (B2.1).

Para os rebanhos B2.2, com saneamento prolongado há pelo menos 24 meses e com 4 controlos serológicos durante esse período, em que a ocorrência regular de seropositivos em baixa percentagem (< 2 %) impedia a subida de classificação sanitária, foi proposta a realização de ambas as provas: Rosa Bengala e Fixação de Complemento a todos os animais, com o abate dos reagentes e exame bacteriológico a material colhido no matadouro, por amostragem.

Em Novembro de 1998, foram introduzidas novas alterações, que afectaram sobretudo o número e o intervalo entre as colheitas de sangue:
- Os rebanhos da classe B1 com uma ou mais reacções serológicas, são classificados como infectados (B2.1);
- Um rebanho B1, anteriormente classificado como B2.1, é classificado como infectado, após 1 controlo serológico positivo. Posteriormente, será necessário efectuar um controlo serológico negativo com um intervalo de 3 meses, passando a estar classificado como B2.2, e dois controlos serológicos negativos com intervalo de 6 meses para atingir o estatuto de indemne (B3);
- No caso de um rebanho B1, anteriormente B2.2, ou um rebanho novo, após o primeiro saneamento negativo (B2.2), serão necessários dois controlos serológicos negativos, com intervalos de 6 meses, para ser declarado como indemne (B3);
- No caso de um rebanho B1, anteriormente B3, o primeiro saneamento negativo classifica-o em B2.2, e um segundo saneamento negativo, efectuado 6 meses após o anterior, é considerado suficiente para que o mesmo atinhe o estatuto indemne de brucelose;
- A subida de um rebanho infectado (B2.1) para a subclasse B2.2 é conseguida após dois controlos serológicos negativos com o intervalo mínimo de 3 meses. Nestes rebanhos, os animais devem ser sujeitos a saneamento regular, efectuado com intervalos de 6 a 12 semanas e nunca antes de 4 semanas após a saída dos animais positivos;
- Os rebanhos B2.1 em incumprimento, no que se refere à Portaria 3/95 de 3 de Janeiro, serão classificados como B1 (desconhecidos);
- Os rebanhos da subclasse B2.2, são sujeitos a controlos serológicos com intervalos de 4 a 6 meses, e no caso de um ou mais apresentarem reacção serológica positiva, a classificação do efectivo é suspensa (B2.2 S), procedendo-se à recolha e envio de órgãos e de sangue para o laboratório. O efectivo é submetido a sequestro, no caso da infecção se confirmar, e classificado como B2.1; caso contrário, o estatuto B2.2 S será levantado após nova prova serológica de validação;
- No caso de infracção grave ou incumprimento ao constante na Portaria 3/95, o efectivo B2.2 passará a ser classificado como B1;
- Um efectivo B2.2 é classificado como B3 após dois controlos, com intervalo de seis meses e serologia negativa, na totalidade dos animais;
- Os rebanhos indemnes (B3) devem efectuar dois controlos serológicos com um intervalo mínimo de 3 meses e máximo de 9 meses;
- Aos rebanhos B3, que apresentem um ou mais animais com serologia positiva, é lhes suspensa a classificação sanitária (B3 S) procedendo-se à recolha e ao envio de órgãos e sangue para o laboratório, ficando o efectivo sob sequestro. No caso da infecção se confirmar, é estabelecido o estatuto sanitário B2.1, caso contrário o estatuto B3 S será levantado após nova prova serológica de validação;
- No caso de infracção grave ou incumprimento ao constante na Portaria 3/95, o efectivo B3 passará a ser classificado como B1.

Basicamente, tratou-se da aplicação da Portaria 3/95. No caso do número de colheitas de sangue, como já foi exposto, e face a condicionalismos financeiros, a aplicação destes critérios não é realista. Não parece aceitável que um rebanho infectado (B2.1) seja classificado como B1, em caso de incumprimento no disposto na legislação. A referida Portaria, inclui nesta classe B1, os efectivos em que se observem infracções ao sequestro, assim como os efectivos em que o programa de saneamento não está a ser cumprido. Não é, no entanto, explicito que o legislador se refira aos rebanhos infectados, que para todos os efeitos são rebanhos onde, serologicamente ou pela bacteriologia, foi confirmada infecção activa. Não é possível considerar tais rebanhos como desconhecidos, uma vez que existe um historial sanitário, que os identifica como infectados. Por outro lado, em termos práticos, entre os Produtores, um estatuto sanitário desconhecido não tem o mesmo efeito que um estatuto de infectado. A legislação é omissa, no que se refere à imposição de sequestro nestas exploracões, nem especifica as medidas a tomar em relação aos rebanhos classificados como desconhecidos, para além das limitações à entrada de animais nessas exploracões. De qualquer forma, impor o sequestro a uma exploração que foi desclassificada por incumprimento do sequestro, torna a medida bizarra e sem sentido, uma vez que a exploração já está sob sequestro.
A análise aos critérios de aplicação das classificações sanitárias registadas no P.I.S.A., permitiu verificar que os critérios nem sempre são aplicados da mesma forma:

- Ao longo dos anos, nunca foi definido com clareza, quando é que a classificação sanitária é alterada. Por vezes, é alterada de imediato, outras vezes, após um período muito longo, mesmo de anos;

- Em relação a sociedades que se formam, ou que se dissolvem, passando os rebanhos a pertencer a produtores singulares, verifica-se que raramente os rebanhos mantêm a mesma classificação sanitária, apesar de serem os mesmos rebanhos e de permanecerem nos mesmos locais de exploração;

- Por vezes é indicado na folha de campo, que o produtor em causa pastoreia no mesmo local os seus animais, não sendo esta observação registada na base de dados, e como tal não sendo objecto de análise na atribuição da classificação sanitária em causa. Por exemplo, em 1998, foi inscrito numa folha de campo que o rebanho em causa, classificado de indemne (B3), partilhava os mesmos pastos e o mesmo pastor com um rebanho infectado. Este caso já era conhecido em 1997 mas, as classificações sanitárias não foram alteradas;

- Num determinado rebanho que vinha sendo sucessivamente penalizado com o abate anual de um número elevado de animais seropositivos, o saneamento é feito em nome da mulher do então produtor, tendo-se registado novamente um número elevado de reagentes. O nome da mulher passou a figurar entre os rebanhos classificados como infectados (B21). A colheita subsequente é feita no nome do pastor, vindo também a identificar-se animais seropositivos. A partir daí, as colheitas passaram a ser feitas em nome do Produtor, mas os nomes da mulher e pastor mantêm-se nas listagens oficiais, como detentores de rebanhos infectados;

- Há rebanhos que são saneados em nome vários Produtor, mas constituem-se como um único rebanho. Alguns destes Produtores têm classificações diferentes, em alguns casos B3, B22 e B21:

- Há Produtores com o saneamento feito e os dados registados, mas cuja classificação sanitária permanece em branco, passados meses;
- Há Produtores que vêm os seus rebanhos classificados como B2.1, apenas com um ou dois reagentes, por vezes à prova do Rosa Bengala, como um caso em que se registaram 2 resultados positivos em 531 animais, sem bacteriologia positiva;
- Em alguns casos, as classificações são alteradas sem que os rebanhos tenham sido saneados, como um caso, em que um rebanho classificado como B2.1 em 1995, não é saneado em 1996, e aparece classificado como B3. Neste caso, o Produtor abandonou a actividade em 1995;
- Também se detectaram casos de rebanhos com um número relativamente elevado de reagentes, e que permaneceram classificados como B3. Por exemplo, um rebanho onde se registaram 40 reagentes em 1994 e outro, com 23 reagentes em 1997. Por vezes, os reagentes nem são registados no P.I.S.A..

Por outro lado, em relação aos rebanhos B21 (Infectados), verificou-se que alguns não eram saneados. Procurou-se apurar as razões que possam ter estado na origem desta situação, para além do caso já referido:

- Falecimento do Produtor, passando o rebanho a ser saneado em nome de um parente, ou venda do rebanho sem o notificar às Autoridades Sanitárias. Na maioria dos casos, é atribuído um número de Produtor ao novo proprietário, e consequentemente uma nova classificação sanitária;
- Abate total e abandono da actividade;
- Recusa de permissão de entrada das brigadas de saneamento;
- Produtores que deixaram de ser sócios, não comparecendo ao acto de saneamento marcado por edital;
- Sociedades que deixaram de existir, não constando que os “novos” proprietários tenham sido relacionados com as respectivas sociedades, aparecendo como Produtores que pela primeira vez vão proceder ao saneamento dos seus efectivos;
- Constituição de sociedades, não existindo qualquer referência à proveniência dos animais que constituem o efectivo dessa nova sociedade, sendo-lhes atribuído novo número de Produtor e nova classificação sanitária.
A legislação obriga a que a entidade sanitária mantenha nas suas listagens, durante três anos, a identificação dos produtores que abandonem a actividade, mas também obriga a actualizações periódicas dessas mesmas listagens, que pensamos, não devem incluir a manutenção de uma classificação sanitária disponível, mantendo-a apenas como histórico.

Caso contrário, um produtor que tenha acesso a esta informação e que por suposto, o seu rebanho esteja infectado mas nas listagens apareça com outra classificação, por exemplo B3 (indemne), poderá servir-se desta classificação para todos os fins.

No caso de um produtor, cuja exploração esteja classificada como Indemne (B3), poderá furar-se a qualquer intervenção sanitária, em relação à brucelose, mantendo a sua classificação sanitária.

Infelizmente, as classificações sanitárias, para os produtores da região, não têm tido qualquer efeito prático, a não ser a aplicação de sanções. Objectivamente, as classificações sanitárias deveriam servir de estímulo para os produtores, e nomeadamente, constituir uma mais valia para a venda de leite e queijo, atestando a inocuidade dos seus produtos.

O Decreto Lei n.º 244/2000, de 27 de Setembro, introduziu alterações às normas adoptadas para a classificação sanitária dos efectivos ovinos e caprinos e das áreas onde estão inseridos. Assim, os efectivos passam a ser classificados como Oficialmente Indemnes, Indemnes e Não Indemnes e as áreas como Oficialmente Indemnes e Não Indemnes. É, no entanto, prematuro fazer uma avaliação sobre o impacto que esta alteração poderá ter.

As classificações sanitárias devem merecer maior atenção de todos, pelo que nos parece que a mesma deveria ser atribuída pela O.P.P., através do Médico Veterinário Coordenador e do Médico Veterinário Assistente, sendo posteriormente homologada pela autoridade sanitária competente.
4.9 A vacinação

As razões que estiveram na base da não utilização da vacina prendem-se com a prevalência da brucelose animal, as reacções serológicas cruzadas, a identificação animal, e a descenção instalada em relação à vacina.

Por outro lado, a imposição de sequestros nas explorações da região tem falhado, possibilitando trocas de animais vacinados. Apesar dos animais vacinados serem tatuados na orelha, a experiência revela que muitas vezes essa marcação não é perceptível. Em termos práticos, a identificação destes animais durante as intervenções sanitárias obriga a uma atenção redobrada.

De qualquer forma, as circulares emanadas da D.G.V., consideram obrigatório o uso da vacina em áreas onde a prevalência seja superior a 5 %, ou quando a prevalência intra-rebanho seja superior a 5 %.

4.10 Circulação animal

A circulação animal, assim como o comércio de animais vivos, tem sido apontada como um dos principais factores que obstam à evolução do estatuto sanitário dos efectivos de ruminantes, no que respeita à brucelose.
O Decreto Lei n.º 54/84, de 15 de Fevereiro, foi publicado com o objectivo de contrariar o trânsito ilegal de gado no País, face às consequências que assumia no plano de sanidade pecuária e de saúde pública. Foi posteriormente alterado pelo Decreto Lei n.º 290/90, de 20 de Setembro (alterado pelos Decreto Lei n.º 67/91, de 8 de Fevereiro, Decreto Lei n.º 64/92, de 23 de Abril, e Decreto Lei n.º 245/96, de 20 de Dezembro) que pretendeu criar mecanismos legais que permitissem estabelecer a relação gado/carne e produtos cárneos, com o conhecimento, a cada instante, da actividade desenvolvida pelos agentes económicos intervenientes.

Deste modo, foi regularizado o uso de guias de circulação e a actividade dos agentes económicos que intervêm no circuito das mercadorias, assim como a fiscalização e as sanções a aplicar.

Em conjugação com esta legislação, a Portaria n.º 1051/91 estabeleceu o Boletim Sanitário com 70 um documento colectivo, referente ao estado sanitário de um rebanho de pequenos ruminantes, como requisito necessário para obter qualquer documento relacionado com a higiene pecuária, emissão de certificado sanitário, compra e venda de animais, emissão de guias sanitárias para abate e direito de indemnização por abate sanitário. Refere ainda, que todos os registos devem ser devidamente rubricados pela entidade responsável e autenticados pela aposição do respectivo carimbo.

Recentemente, foi aprovado o Decreto Lei n.º 338/99, que passou a regular exclusivamente a detenção/circulação de gado, unificando os diplomas legais nacionais que transpuseram para o direito nacional, os normativos comunitários sobre a circulação de carne e produtos cárneos e identificação animal. Em relação à legislação existente, introduz algumas modificações pontuais, realçando-se a substituição do Boletim Sanitário de Rebanho pelo Passaporte de Rebanho. Os modelos de impresso a utilizar no âmbito do Regulamento de Identificação, Registo e Circulação de Animais, foram publicados através do Despacho n.º 17735/99.

Se no caso dos suínos e dos bovinos, foi conseguido um certo ordenamento na circulação de animais, no caso dos pequenos ruminantes, para além do que já foi referido anteriormente, sobretudo em relação aos registos das explorações e à identificação animal, que só por si dificultam o controlo da circulação animal,
 pelo menos nos últimos três anos, nenhum Boletim Sanitário de Rebanho foi emitido ou actualizado. O mesmo está a acontecer em relação aos Passaportes de Rebanho.

Apesar do Decreto-Lei n.º 338/99, referir na sua introdução, a necessidade de separar a legislação fiscal da legislação veterinária, o Artigo 2.º do diploma em causa é todo dedicado à fiscalização. Este aspecto tem sido o principal objectivo da Autoridade Sanitária, que sistematicamente se refere à questão da circulação animal como um problema de “Policia Sanitária”. Esta, por sua vez, é encarada como uma medida a tomar ao nível do controlo da circulação de viaturas de transporte animal, com ajuda das forças de segurança.

Parece-nos, contudo, pelos resultados até hoje obtidos, que não é a forma mais eficaz de controlar o movimento animal. Por outro lado, não nos parece que o problema resida na legislação, que nem é sequer aplicada. A questão da circulação animal, como tantas outras, depende em grande parte da participação dos produtores. É importante investir na educação dos produtores e fomentar a sua participação de forma responsável no controlo da circulação animal. É necessário que o Estado se torne menos fiscalizador e mais pedagógico.

A criação, ao nível da O.P.P., de um sistema de informação articulado com os produtores, que possa gerir as compras e vendas de animais, é necessário e útil. O registo das explorações, assim como a identificação dos animais, deve ser controlado pelo Estado e pelas Associações de Agricultores.

4.11 Brucelose Humana

A relação entre a Direcção de Serviços de Veterinária (D.R.A.B.I.) e os da Sub-Região de Saúde como parceiros na luta contra a brucelose, é muito ténue, não existindo um fluxo de informação entre ambos, nem parcerias de análise epidemiológica dos casos de brucelose humana que vão surgindo.

No caso de um foco de brucelose num rebanho, é realizado um inquérito epidemiológico pela D.R.A.B.I., cujos resultados são desconhecidos.
Da mesma forma, no caso de notificação de um caso de brucelose humana, é realizado um inquérito, cujos resultados não são divulgados aos serviços do Ministério da Agricultura. A introdução de um sistema de informação entre os serviços competentes, e inclusive o acompanhamento do inquérito por técnicos de ambos os serviços, permitiria identificar rebanhos infectados, com serologia negativa.

A brucelose humana pode ter origem no consumo de leite e seus derivados. Em termos de legislação, a venda e o consumo de queijo fresco feito de leite cru de cabra, estreme ou de mistura, foi proibido em 1954 (Portaria n.º 14805, de 29 de Março), uma vez que o leite desta espécie animal vinha a ser responsabilizado pelos casos de brucelose humana. A Portaria 861/84, de 15 de Novembro, estende a proibição aos leites crus de vaca e ovelha, sem que sejam submetidos à pasteurização ou outro tratamento térmico.

Posteriormente, a Portaria n.º 533/93, de 21 de Maio, proíbe o fabrico de queijo a partir de leite cru de ovelha ou cabra, exceto se destinado ao fabrico de queijo com uma cura superior a 2 meses, desde que provenham de rebanhos indemnes ou oficialmente indemnes. Entretanto, a Portaria n.º 1068/95, de 30 de Agosto, reduziu o tempo de cura dos queijos feitos a partir de leite cru destas duas espécies, para 2 semanas. No ano seguinte, a Portaria n.º 56/96, de 22 de Fevereiro, repôs o tempo de cura em 2 meses.

O que torna a legislação incoerente, é que os queijos produzidos na região, são queijos com Denominação de Origem, nomeadamente o Queijo de Castelo Branco e o Queijo Amarelo, com tempos de cura de 40 a 42 dias.

Por outro lado, não é raro, que os produtores com rebanhos infectados possuam queijarias, muitas delas licenciadas, em alguns casos produzindo o denominado “queijo de 8 dias”, que vendem posteriormente aos “afinadores” que os curam. Vendendo o leite ou produzindo queijo, a legislação obriga ao tratamento térmico do leite “in loco”, e controlado pela autoridade competente.

Se os projectos de queijarias apresentados por estes produtores tem sido, ultimamente, rejeitados, o impedimento do leite destes rebanhos em ser utilizado na produção de queijo é um assunto polémico; não em relação aos queijos com
cura de menos de 2 meses, mas por exemplo, em relação à produção de Queijo Picante, cujo tempo de cura ultrapassa os 90 dias.

Na realidade, ao limitar a produção de queijos a partir de leite cru com menos de 2 meses de cura, assume-se que os 2 meses são suficientes para eliminar a *Brucella*, através do processo de cura. Segundo este princípio, o leite de um rebanho infectado deixa de ser um produto infectante, se o queijo produzido sofrer uma cura superior a 2 meses.

Nos últimos anos, entram no País camiões-cisterna carregados com leite cru de ovelha e cabra de Espanha. O leite é distribuído por explorações da região onde é misturado com o leite obtido pela ordenha dos animais da exploração e destina-se ao fabrico do queijo.

Se a venda deste leite é acompanhada por documentos legais, a desconfiança em relação à qualidade do leite, e nomeadamente no que se refere à brucelose, instalou-se entre os Produtores não compradores. No entanto, a livre circulação de produtos no mercado em que nos encontramos inseridos torna praticamente impossível a imposição de medidas restritivas à importação desse leite.

4.12 Brucelose Humana no distrito de Castelo Branco

O primeiro caso de brucelose humana terá sido diagnosticado pela primeira vez em Portugal em Cascais, em 1893, pelo Professor Carlos Tavares. Este médico publicou nesse mesmo ano, um artigo sobre a febre mediterrânica, no qual refere que a doença evolvia nas margens do Rio Tejo, desde há longos anos, aconselhando os seus colegas a prestarem atenção ao facto e a recomendarem que o diagnóstico clínico fosse complementado com o isolamento do *M. melitensis*.

A confirmação laboratorial do diagnóstico clínico da brucelose, através das provas de aglutinação e de fixação do complemento, foi realizada pela primeira vez em 1910, pelo Dr. Nicolau Bettencourt, dando início ao estudo científico da *Brucella* no nosso País. Um inquérito epidemiológico levado a cabo pela Direcção Geral de
Saúde Pública, em 1914, veio comprovar que a doença já estava disseminada por todo o território nacional (Corrêa de Sá et al., 1990).

Em Portugal, as taxas de incidência, calculadas com base nos casos notificados, variam com as regiões, apresentando alguns distritos incidências muito elevadas, principalmente Guarda, Bragança, Vila Real, Castelo Branco, Beja, Évora, Portalegre, Viseu e Coimbra. A importância relativa de cada distrito, tem-se alterado ao longo dos anos, devido à irregularidade das notificações e a modificações nos cenários epidemiológicos da brucelose animal, resultado das acções desenvolvidas no âmbito veterinário (Vilhena, 1996). A nível do País regista-se um aumento do número de casos declarados desde 1959 com 192 casos (taxa de morbibilidade de 2,28/100000 habitantes) para 1576 casos em 1989, correspondendo a uma taxa de morbibilidade de 15,47/100000 habitantes (Vilhena, 1996).

Em 1994 notificaram-se 1243 casos a nível nacional, observando-se um decréscimo até 1998, ano em que foram declarados 817 casos. Em relação ao distrito de Castelo Branco, os casos notificados representam 6 a 8 % do total nacional, e 17 a 21 % dos notificados na Região Centro (Gráfico n.º 1).

Fonte: D.G.S. (2001)

Os dados referentes ao ano de 1999 ainda não estão disponíveis, e em relação a 2000, a taxa de incidência, actualizada no mês de Setembro era de 3,76 casos por 100000 habitantes no distrito de Castelo Branco. A nível nacional, o número de casos de brucelose notificados a nível nacional foi de 500, uma incidência de 5,02 casos por 100000 habitantes (D.G.S., 2001).
Em relação aos concelhos de Idanha-a-Nova e de Castelo Branco, o número de casos declarados atingiu o seu máximo em 1999: 9 em ambos os concelhos (Gráfico n.º 2).

![Gráfico n.º 2 - Distribuição dos casos de brucelose humana nos concelhos de Castelo Branco e Idanha-a-Nova (1994 – 1999)](image)

Fonte: D.G.S. (2001)

Embora tenham sido notificados casos no concelho de Vila Velha de Rodão, os números não foram fornecidos.

A fonte de infecção nem sempre é especificada. Nos concelhos de Castelo Branco e de Idanha-a-Nova, de um total de 21 casos, em 20 %, a fonte foi o consumo de queijo fresco, enquanto os restantes foram atribuídos ao contacto directo com animais. Entre estes últimos, quase 50 % resultou do contacto com ovíneos, e em 24 % não foi especificada a espécie animal em causa.

O número de casos nos homens atinge 62 % dos casos declarados, sensivelmente o mesmo valor registado em ambos os concelhos, 61 % em Castelo Branco e 63 % em Idanha-a-Nova.

A nível nacional, os casos de brucelose predominam entre os indivíduos do sexo masculino, na razão de 2:1 (Vilhena, 1996), o que é atribuído a uma maior exposição dos indivíduos do sexo masculino às fontes de infecção, como resultado da divisão das tarefas em meios rurais.

A incidência é mais elevada nas populações rurais pela maior frequência de contactos com os animais, dependentes da densidade animal, da prevalência da doença nos efectivos animais, no nível de educação sanitária e nos hábitos alimentares.

Só reunimos dados sobre a profissão de alguns indivíduos com brucelose na região: 5 eram pastores, 3 queijeiros (todas mulheres), 2 agricultores, e os restantes, um pedreiro, um estudante, um motorista, um talhante e um magarefe.

O facto de na região existir um grande número de zonas de caça livre ou associativa, onde as espécies cinegéticas partilham o domínio vital com os
pequenos ruminantes, deve merecer atenção especial. O contacto com o sangue e a manipulação das vísceras de lebres, javalis e veados, podem constituir fontes de infecção para o Homem. Deste modo, a ocorrência da brucelose nestas espécies deve ser investigada e o diagnóstico clínico pelo Médico, deve reunir dados sobre eventuais contactos com espécies cinegéticas.
CAPÍTULO 5

A EVOLUÇÃO DAS CAMPANHAS DE LUTA CONTRA A BRUCELOSE NOS PEQUENOS RUMINANTES NA ÁREA DE ACÇÃO DA OPP - OVIBEIRA

A prevalência e a incidência da brucelose a nível de rebanho e animal permitem avaliar o progresso obtido no controlo da brucelose, embora o seu cálculo nem sempre seja possível.

Os valores estimados para estes dois indicadores determinam a modificação ou a manutenção dos métodos de controlo integrados no programa, pelo que é desejável que os valores determinados se aproximem o mais possível do valor real.

As classificações sanitárias atribuídas aos rebanhos devem reflectir o estatuto sanitário dos mesmos e da região onde se inserem. Hoje, são as classificações sanitárias que regulam o comércio animal e de produtos de origem animal, que na região se centram fundamentalmente no queijo. Deste modo, as classificações sanitárias têm um papel relevante no controlo e na erradicação da doença. Em última análise, pretende-se atribuir uma classificação sanitária de indemne à região, que assegure uma posição privilegiada em relação ao comércio animal e de produtos de origem animal, dentro da região, com outras regiões do País ou com outros Países.

Os valores calculados no âmbito dos Programas de Erradicação dependem da qualidade da informação recolhida. Os sistemas de informação constituem-se como um instrumento essencial à tomada de decisões, na definição de prioridades, no planeamento e na implementação de medidas, na mobilização de recursos e sua alocação, e na detecção precoce de focos de brucelose.
Por outro lado, existe uma pressão crescente de vários sectores, ligados à agricultura, aos consumidores e outros, no sentido dos médicos veterinários justificarem os custos das suas actividades e a eficácia do cumprimento das suas atribuições, em termos de resposta rápida, adaptada às circunstâncias. A necessidade de mais e melhor informação é fundamental para a avaliação do actual Programa de Erradicação da Brucelose e nas tomadas de decisão futuras. A qualidade da informação é crucial para que as decisões tomadas estejam adaptadas às circunstâncias “de terreno”.

5.1 Sistemas de informação geográfica

Os Sistemas de Informação Geográfica constituem uma tecnologia computadorizada para a recolha, armazenamento, processamento, consulta e análise de dados espaciais e produção de informação geográfica, assim como da sua divulgação. Permitem a integração e a análise de várias bases de dados em simultâneo, utilizando coordenadas geográficas a escalas específicas, por exemplo, dados sobre precipitação, tipo de solo, humidade do solo, infra-estruturas dos Serviços de Saúde, presença de vectores ou ocorrência de doença nas pessoas e nos animais. Facilitam ainda, a colaboração entre diferentes sectores e podem ser adaptados, de forma flexível, às necessidades de cada País (W.H.O., 1997b).
Essencialmente, os SIG resultam da combinação da tecnologia cartográfica assistida por computador e dos sistemas de bases de dados, nos quais, dados espaciais de fontes diversas são processados e analisados (Sanson et al., 1991). A informação geográfica é organizada em vários níveis com os respectivos atributos. Estes constituem itens de dados relacionados com o mapa mas não fazem parte dele, por exemplo, o nome das regiões ou o tipo de vegetação na área, podendo ser adicionados progressivamente.

Qualquer informação codificada por local, como um País ou uma região, ou por coordenadas de latitude/longitude ou outro sistema de coordenadas atribuído ao mapa, pode ser armazenada, processada e analisada. Uma importante vantagem dos SIG sobre os sistemas de bases de dados tradicionais, é o de se poder visualizar e reflectir sobre dados projectados num ambiente gráfico. Além disso, como os dados são referenciados geograficamente, sabendo-se exactamente a sua localização em relação a outras características reconhecidas como importantes, pode-se estabelecer relações entre os vários atributos e locais (Dubuc et al., 1996). Assim, os SIG permitem gerar mapas temáticos, como por exemplo, a localização dos focos de brucelose. Trata-se num primeiro momento de acompanhar a evolução e a dispersão de doenças sob vigilância e de analisar as ocorrências em função das populações em risco. Permite, também, efectuar a representação espacial e estatística do estatuto sanitário dos efectivos, relativamente às diferentes doenças sob controlo ou vigilância.

Uma variedade considerável de métodos de análise espacial podem ser aplicados no processamento da informação que não estão ao alcance de outros sistemas de informação. Entre outros, podemos referenciar a análise de vizinhança (por exemplo, a identificação e produção de uma listagem de todas as explorações vizinhas de uma exploração infectada), criar zonas tampão de diferentes dimensões em redor de certas características (por exemplo, determinar quais as explorações em risco de infeção em função de uma distância em relação às explorações infectadas), sobrepôr vários níveis de informação ou definir fluxos de movimento animal ou de produtos de origem animal.

A análise espacial constitui um importante método para testar hipóteses sobre tendências de ocorrência de doença, nomeadamente, definir se existem agregados
de doença (“clusters”), se uma ou mais doenças e um determinado factor de risco
tem a mesma distribuição geográfica e se existem relações específicas definidas
entre os valores da mesma variável em diferentes locais (Hungerford, 1991).
Os SIG são, portanto, uma “ferramenta” que serve as necessidades dos decisores
de Saúde Animal e são ideais para medir a variabilidade da incidência e da
prevalência duma doença, e de factores relacionados, como o Tempo.
Muito do poder dos SIG para o estudo das doenças transmissíveis está associado à
sua capacidade para registar dados detalhados de uma determinada área durante
longos períodos (W.H.O., 1999). Estes dados podem ser utilizados para desenhar
e planear novos estudos e optimizar as intervenções. Por exemplo, os SIG podem
ser utilizados para determinar o momento de implementação de um programa, que
rebanhos a envolver, recurso ou não à vacinação, definir o suporte logístico
necessário, aumentando a eficácia e a rapidez do processamento e da análise de
dados, e da difusão da informação pelos vários intervenientes.
A performance de um SIG, como o de qualquer outro sistema de informação,
depende das bases de dados existentes e da qualidade dos seus dados, da
possibilidade de relacionar dados das várias bases de dados que constituem o
sistema de informação, assim como de relacionar diferentes dados com o sistema
de georeferência utilizado.
No entanto, o sucesso dos programas sanitários não dependem da eficácia da
“ferramenta” SIG, mas sobretudo das pessoas que executam o programa, da
articulação entre parceiros, da motivação dos diferentes actores e da qualidade da
informação produzida, que fundamentará as decisões a tomar.
A Detecção Remota, por outro lado, é uma tecnologia útil quando a ocorrência e
/or a dispersão da doença depende de condições ambientais. A informação é
recolhida através de sensores em satélites ou aviões. Porém, o custo das imagens
de satélite tem restringido o uso desta tecnologia na Saúde Animal.
5.2 Material e métodos

5.2.1 Recolha da informação e construção da bases de dados

A base de dados construída para o estudo da evolução da campanha, referida em 4.2, engloba os concelhos de Castelo Branco, Idanha-a-Nova e Vila Velha de Rodão, todos pertencentes ao distrito de Castelo Branco (Figura n.º 1). Os dados foram armazenados em ficheiros anuais, por produtor e por colheita de sangue, de 1994 a 1999, com um total de 3358 rebanhos.

Os dados foram recolhidos em várias fontes, nomeadamente na Direcção Regional de Agricultura da Beira Interior (D.R.A.B.I.), através da consulta das folhas de campo e dos resultados serológicos no Laboratório de Apoio Regional (Alcains). Foram também obtidas listagens do P.I.S.A. sobre a classificação sanitária dos rebanhos e listagens dos produtores associados na O.P.P. - Ovibeira; listagens de atribuição de prémios a ovinos e a caprinos no I.N.G.A., que foram utilizadas para cruzar informação sobre a identidade dos produtores, nomeadamente entre produtores com o mesmo nome, e para comparar o número de quotas atribuídas e o número de animais submetidos a saneamento.

Foram criados na base de dados, campos para registar o número de produtor, para diferenciar o número de colheita de sangues anual, e para definir se se tratava de um novo produtor. Um campo de observações foi também criado para registo, entre outros, do nome do antigo proprietário do rebanho.

Foram registados os resultados de cada prova serológica, o número de animais reagentes em cada prova, os soros prejudicados e os soros que produziram reacção anti-complementar no teste da Fixação do Complemento.

A classificação sanitária, atribuída no final de cada ano a cada produtor, transita para o registo do ano seguinte. Assim, foi possível determinar a evolução das classificações sanitárias atribuídas.

Considerámos três tipos de rebanho: rebanhos só com caprinos, rebanhos só com ovinos e rebanhos com caprinos e ovinos. Como se tornou difícil diferenciar com exactidão nos rebanhos mistos, o número de caprinos e de ovinos, estes rebanhos e os seus animais foram analisados à parte. Assim, sempre que nos referirmos a
caprinos e a ovinos, estamos a considerar, apenas, os animais que pertencem a rebanhos com uma única espécie animal. Foram ainda registadas, nos rebanhos mistos, a percentagem de caprinos. Também foi registado, para todos os rebanhos, os que não possuíam machos reprodutores.

Em relação à comparação feita entre o número de animais saneados e o limite de quotas atribuído, consideraram-se apenas as fêmeas do rebanho: adultas e jovens. Nestas últimas, não foi possível precisar a idade, nem o fim (substituição ou abate) pelo que foram registadas na totalidade.

Para aceder ao Sistema de Informação Geográfica, foi utilizado o programa Mapex (versão 2.0), onde foram construídos os mapas temáticos. Para analisar os dados, a base de dados foi exportada para o programa Microsoft Excell 97, que suportou os dados associados aos mapas temáticos.

5.2.2 Número de rebanhos e de animais

Os resultados apresentados referem-se apenas aos rebanhos que anualmente foram submetidos a saneamento, no âmbito do Programa de Controlo e de Erradicação da Brucelose dos Pequenos Ruminantes, entre 1994 e 1999. Foram apenas considerados os animais submetidos à 1ª Colheita de sangue, uma vez que os registos não permitiam diferenciar os animais submetidos a 1ª Colheitas nos saneamentos seguintes.

Para determinar a evolução do tamanho dos rebanhos ao longo do tempo e cruzar informação com as listagens dos prémios aos pequenos ruminantes, sempre que possível diferenciámos machos e fêmeas, jovens e adultos.

Foi registado o diferencial entre o número de animais submetidos ao saneamento entre cada colheita, para podermos quantificar as flutuações no número de animais de cada rebanho.
5.2.3 Marcação e abate de animais reagentes

O número de animais reagentes às provas serológicas foi obtido a partir das folhas de campo e não das listagens do P.I.S.A., uma vez que detectámos que alguns reagentes não tinham sido registados. No entanto, foi feita uma listagem do P.I.S.A. para comparação de registos.

Foi solicitada à D.R.A.B.I., informação sobre as datas de marcação e de abate, e o número de animais marcados e abatidos por rebanho. Esta informação não estava disponível na O.P.P., apesar de ter sido solicitado que fosse fornecida atempadamente.

Na base de dados, foram registadas as datas de saneamento e as datas de comunicação dos resultados laboratoriais para cálculo dos tempos médios entre a data de saneamento, os resultados laboratoriais, a marcação dos seropositivos e o respectivo abate.

5.2.4 Prevalência aparente e incidência

Os rebanhos são saneados, em média, uma vez por ano. Com algumas excepções, apenas os rebanhos infectados ou com reagentes na 1ª Colheita são novamente submetidos a novo saneamento. Nestas 2ªs Colheitas, os registos não permitem diferenciar quais os animais do rebanho submetidos à colheita de sangue pela primeira vez, o que dificulta a identificação da população animal em risco que constitui o denominador, para o cálculo da prevalência a nível animal em cada ano. Assim, a prevalência foi determinada em relação aos animais saneados na 1ª Colheita, excluindo todos os animais com serologia “prejudicada”, e o numerador utilizado foi o somatório dos reagentes detectados na 1ª Colheita. Desta forma, foi comparada a prevalência, anualmente, definida em função da primeira colheita.

A prevalência de rebanhos positivos foi calculada em função da classificação sanitária do rebanho e não em função do número de rebanhos com animais reagentes. Foram considerados todos os rebanhos classificados como infectados,
saneados ou não, desde que os rebanhos ainda existissem. Os rebanhos extintos não foram contabilizados.

Todos os rebanhos infectados que viram a sua classificação ser alterada para B22 (suspeita de brucelose) e que posteriormente, face aos resultados serológicos, voltaram a baixar de classificação, sem nunca serem classificados como indemnés, foram igualmente considerados para cálculo da prevalência a nível de rebanho, nos anos em que estiveram classificados como “suspeitos”. De forma idêntica, todos os rebanhos infectados que por não terem sido saneados viram a sua classificação sanitária ser alterada para B1 (rebanho em situação sanitária desconhecida) também foram considerados no cálculo da prevalência de rebanho.

A incidência não foi calculada a nível animal, já que como em relação à prevalência, não foi possível determinar com rigor o número exacto de animais saneados ao longo do ano, para além de que a maioria dos rebanhos só foi saneada uma vez por ano. Por outro lado, torna-se difícil a aplicação do conceito de “caso novo de doença”, pois pressupõe colheitas menos espaçadas no tempo, e não como sucede, maioritariamente, com intervalos superiores a um ano, impossibilitando referenciar temporalmente o “caso novo”.

Assim sendo, calculámos a incidência a nível de rebanho, utilizando como numerador os novos rebanhos notificados como infectados, anualmente. Contudo, não foram considerados os rebanhos que num determinado ano subiram na classificação sanitária (B22), mas que posteriormente voltaram a ser considerados como infectados (B21). No denominador foram incluídos os rebanhos não infectados (oficialmente) no início de cada ano.

Os valores calculados de prevalência e incidência não sofreram qualquer tipo de ajustamento que considerasse os rebanhos que em cada ano não foram saneados.

Também não foi feito qualquer ajustamento para determinar a prevalência verdadeira (Rogan and Gladen, 1978) ou a empírica (Donald, 1993) de doença nos animais porque não existiu um único protocolo de aplicação/interpretação das provas serológicas, em vigor durante o período de estudo.

A prevalência e a incidência permitiram calcular outros indicadores sobre a dinâmica da infecção brucelica a nível de concelho e/ou de freguesia, nomeadamente: a taxa de extinção anual de rebanhos infectados, a dinâmica dos
focos de doença, a variação da incidência e a variação do tempo despendido para extinguir os casos de brucelose (Battistini et al., 1997).
Todos os rácios/probabilidades devem ser expressos como proporções \(0 \leq P \leq 1\), no entanto, os resultados são fornecidos como percentagens para facilitar a leitura e a análise.

5.2.5 Coeficiente de correlação intra-rebanho

Nos estudos epidemiológicos calculam-se geralmente três prevalências, mas apenas utilizamos as prevalências a nível animal e de rebanhos positivos, não sendo apresentados os valores da prevalência média por rebanho. São dois indicadores distintos e não são directamente proporcionais. Embora a prevalência a nível animal, origine um aumento da prevalência de rebanho, é possível que um pequeno número de animais infectados, uniformemente distribuídos nos rebanhos, cause uma prevalência de rebanhos positivos elevada.
As duas prevalências encontram-se ligadas por um factor, um coeficiente de correlação intra-rebanho, \(\rho\) (Donald and Donner, 1988), que varia entre 0 e 1, e que expressa a extensão segundo a qual a doença tende a agregar-se. Se houver uma tendência elevada para a doença se agregar, as duas prevalências são sensivelmente da mesma ordem de grandeza; caso contrário, a prevalência de rebanhos positivos excede a animal (Donald, 1993). Este coeficiente, expressa também, a extensão segundo a qual, animais do mesmo rebanho têm respostas similares aos testes de diagnóstico.
O coeficiente de correlação intra-rebanho \(\rho\) é definido como a proporção da variância total na população que pode ser atribuída à variação entre rebanhos. Não sendo conhecido o valor de \(\rho\), ele pode ser calculado através de uma análise de variância (ANOVA):

\[
\rho_e = \frac{SSe - SSd}{SSe + (m-1)*SSe}
\]
em que \(p_e \) é o valor estimado de \(p \), SSe a soma dos quadrados entre rebanhos e SSd a soma de quadrados intra-rebanhos e \(m \), o tamanho médio dos rebanhos (Donald and Donner, 1988).

Assim, a distribuição da doença é condicionada pela prevalência a nível animal e pelo coeficiente de correlação intra-rebanho. Quando \(p \) for igual a zero, a doença encontra-se uniformemente distribuída na população, enquanto se \(p \) for igual a 1, todos os grupos são concordantes, ou seja, todos os elementos estão infectados ou sãos.

O \(p \) foi determinado para a área de acção da Ovibeira, a nível de concelho e de freguesia, e em função da espécie animal (tipo de rebanho).

Geralmente, são utilizados três intervalos para interpretação do coeficiente de correlação intra-rebanho: Baixo (<0.05), médio (0.05 – 0.1) e alto (0.1 – 0.2) (McDermott and Schukken, 1994).

5.2.6 Dinâmica dos focos de brucelose

A dinâmica dos focos de brucelose foi calculada para cada freguesia, sendo obtida pela diferença entre o número de rebanhos onde a infecção foi extinta e o número de rebanhos notificados oficialmente como infectados, em cada ano (Battistini et al., 1997). Em relação aos primeiros, considerou-se como livre de doença, o rebanho que tendo estado oficialmente infectado, foi classificado como B3 (indemne).

Este parâmetro permite visualizar onde é que a doença aumentou ou diminuiu, sem quantificar o padrão utilizado. Para a obtenção dos mapas temáticos foi feita a codificação deste indicador (Tabela n.º 21).
<table>
<thead>
<tr>
<th>Primeira condição</th>
<th>Segunda Condição</th>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notificados – Extintos > 0</td>
<td></td>
<td>1</td>
<td>Doença em expansão</td>
</tr>
<tr>
<td>Notificados – Extintos = 0</td>
<td>Residuais* + Notificados = 0</td>
<td>0</td>
<td>Doença ausente</td>
</tr>
<tr>
<td>Notificados – Extintos < 0</td>
<td></td>
<td>-1</td>
<td>Doença em regressão</td>
</tr>
<tr>
<td>Notificados – Extintos = 0</td>
<td>Residuais + Notificados > 0</td>
<td>-2</td>
<td>Doença estável</td>
</tr>
</tbody>
</table>

* Rebanhos residuais – rebanhos que mantiveram o estatuto infectado de um ano para o outro

Tabela n.º 21 - Codificação utilizada para definir a dinâmica dos focos num mapa temático

5.2.7 Variação da incidência

A variação da incidência da doença (E) foi determinada pelo seguinte fórmula (Battistini et al., 1997):

\[
E = \frac{(H-I-X)}{S}
\]

HI = Incidência da doença (rebanho/freguesia)
X = Incidência média durante os anos em estudo, a nível regional
S = Desvio padrão da incidência média

O indicador E foi padronizado para poder ser facilmente interpretado (Tabela n.º 22).

<table>
<thead>
<tr>
<th>Indicador “E”</th>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>E > 1.96</td>
<td>2</td>
<td>Em progressão epidémica durante o ano</td>
</tr>
<tr>
<td>E = indeterminado</td>
<td>0</td>
<td>Doença ausente durante o ano</td>
</tr>
<tr>
<td>-1.96 < E < 1.96</td>
<td>1</td>
<td>Situação endémica</td>
</tr>
<tr>
<td>E < -1.96</td>
<td>-1</td>
<td>Diminuição significativa da doença</td>
</tr>
</tbody>
</table>

Tabela n.º 22 - Critério para a interpretação da variação de incidência “E”
Este indicador foi calculado para cada ano e para cada uma das freguesias da área em estudo. Foi necessário calcular a média (μ) e o desvio padrão (σ) deste indicador a nível regional para o mesmo ano com o intuito de produzir mapas temáticos. Como muitas das freguesias estavam numa situação endémica, uma vez que o parâmetro foi referenciado em relação à região e não à freguesia (codificados como 1 na Tabela n.º 22) o indicador teve de ser ajustado (Tabela n.º 23).

<table>
<thead>
<tr>
<th>Indicador “E”</th>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>E = Indeterminado</td>
<td>0</td>
<td>Ausência de doença</td>
</tr>
<tr>
<td>E < (μ-1.50s)</td>
<td>1</td>
<td>Diminuição significativa da doença durante o ano</td>
</tr>
<tr>
<td>(μ-1.50s) < E < (μ-0.50s)</td>
<td>2</td>
<td>Diminuição da doença durante o ano</td>
</tr>
<tr>
<td>(μ-0.50s) < E < (μ+0.50s)</td>
<td>3</td>
<td>Doença estável</td>
</tr>
<tr>
<td>(μ+0.50s) < E < (μ+1.50s)</td>
<td>4</td>
<td>Aumento da doença durante o ano</td>
</tr>
<tr>
<td>E ≥ (μ+1.50s)</td>
<td>5</td>
<td>Aumento significativo da doença durante o ano</td>
</tr>
</tbody>
</table>

Tabela n.º 23 - Codificação utilizada para produção de mapas temáticos sobre a variação da incidência “E”

5.2.8 Taxa de extinção anual de rebanhos infectados

Esta taxa foi calculada como o rácio entre o número de rebanhos infectados extintos e o somatório do número de rebanhos infectados existentes nesse ano (Battistini et al., 1997). Os rebanhos foram considerados extintos quando foram classificados como indemnes (B3). Esta taxa é muito útil para calcular a variação de tempo despendido para extinguir um foco de brucelose.
5.2.9 Variação do tempo despendido para extinguir os focos de brucelose

A variação do tempo despendido para extinguir os focos de brucelose foi determinado pelo indicador V (Battistini et al., 1997):

\[V = (C-MC)/SC \]

C = Taxa de extinção anual
MC = Média da Taxa de Extinção durante os dois anos posteriores
SC = Desvio Padrão da Taxa de Extinção durante os dois anos posteriores

Este parâmetro foi calculado a nível de concelho, utilizando os valores obtidos em todas as freguesias de cada concelho. Para a interpretação dos resultados foi criado um sistema de codificação apresentado na Tabela n.º 24.

<table>
<thead>
<tr>
<th>Ano em Estudo</th>
<th>Dois Anos Precedentes</th>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxa de Extinção indeterminada</td>
<td>Taxa de Extinção indeterminada</td>
<td>0</td>
<td>Doença sempre ausente</td>
</tr>
<tr>
<td>Taxa de Extinção indeterminada</td>
<td>Taxa de Extinção ≥ 0</td>
<td>1</td>
<td>Doença ausente no ano em estudo</td>
</tr>
<tr>
<td>V > 1.96</td>
<td></td>
<td>2</td>
<td>Aumento de velocidade</td>
</tr>
<tr>
<td>-1.96 ≤ V ≤ 1.96</td>
<td></td>
<td>3</td>
<td>Velocidade estável</td>
</tr>
<tr>
<td>V < 1.96</td>
<td></td>
<td>4</td>
<td>Diminuição da velocidade</td>
</tr>
<tr>
<td>Taxa de Extinção = 0</td>
<td></td>
<td>5</td>
<td>Nenhum surto extinto nos 2 anos precedentes</td>
</tr>
<tr>
<td>Taxa de Extinção ≥ 0</td>
<td>Taxa de Extinção indeterminada</td>
<td>6</td>
<td>Doença presente apenas no ano em estudo</td>
</tr>
</tbody>
</table>

Tabela n.º 24 – Codificação utilizada para a produção de mapas temáticos da variação do tempo despendido para extinguir os focos de brucelose
5.2.10 Índice de Moran (Moran I)

É um coeficiente de correlação espacial frequentemente aplicado a taxas de ocorrência de doenças. O teste espacial de autocorrelação é similar ao tradicional coeficiente de correlação de Pearson, excepto que, a correlação é aferida entre diferentes valores dentro da mesma variável, sendo incluída uma matriz de ponderação para definir a relação espacial entre pontos que reflecte a proximidade geográfica. O coeficiente é calculado pelo rácio entre o produto dos desvios em relação à média e a soma dos quadrados de x (Ward and Carpenter, 2000):

\[
I = \frac{\sum_i \sum_j w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_i \sum_j w_{ij} (x_i - \bar{x})^2}
\]

em que N é o número de pontos (freguesias) em estudo, J o número de pares de pontos examinados, \(x_i\) o valor (incidência ou prevalência) no ponto \(i\) e \(x_j\) é o valor no ponto \(j\) (\(x_i\) e \(x_j\) são dois pontos vizinhos) e \(w_{ij}\) é a matriz de ponderação (onde, o valor \(I\) é atribuído aos pontos vizinhos mais próximos, caso contrário o valor é 0, ou alguma medida da distância inversa entre pontos vizinhos).

O valor esperado de \(I\) é igual a \(-1/(N-1)\), o que implica um valor mais próximo de 0 quando N aumenta, e a estatística z pode ser calculada da forma habitual, utilizando o desvio padrão de I. O valor esperado tende para 0 à medida que o número de áreas analisadas aumenta.

Os valores obtidos por Moran I encontram-se entre 1 e \(-1\), quantificando o grau de correlação existente entre as taxas de doença observadas na área em estudo. Os valores positivos indicam que as taxas de doença nas áreas adjacentes ou vizinhas são semelhantes (tendência espacial para agregação dos casos de doença) e os valores negativos indicam que, em áreas vizinhas, as taxas de doença se distribuem ao acaso (tendência para a dispersão dos casos).

A hipótese nula assume que as taxas de doença são espacialmente independentes (não existe autocorrelação espacial). A hipótese alternativa assume, por outro
lado, que as taxas de doença não são espacialmente independentes pelo que, em áreas vizinhas, as taxas de doença são similares.

O índice de Moran foi calculado a partir dos valores de incidência de rebanhos positivos, para cada um dos anos em estudo, no programa MAPINFO Profissional 6.0 (MAPINFO Corporation), com auxílio de uma rotina de cálculo do índice que é de domínio público (Free Software Foundation, Inc.) (Zatelli, 1991).

5.2.11 Análise espaço/temporal

O teste estatístico, efectuado no programa informático StaTScan, versão 2.3.1 (Kulldorff et al., 1998) define uma janela circular de “varrimento” que se move sequencialmente à volta de cada um dos centróides na área em estudo. Para cada centróide, o raio da janela pode variar continuamente de zero a um determinado valor limite máximo seleccionado pelo investigador. Um raio que produza um círculo cuja área não ultrapasse 50 % da área de estudo é recomendado (Kulldorff et al., 1998). Assim, sob a hipótese nula de uma completa distribuição espacial aleatória, há 50 % de possibilidades de que o valor de P (probabilidade de ocorrência de um agregado se dever ao acaso), para o agregado de casos de doença mais provável seja menor que 0.5 e com igual possibilidade de ser maior.

Sob a hipótese nula poderá haver sempre alguma área onde se registe uma taxa maior do que a esperada apenas devido ao acaso. Assim, o agregado definido como o mais provável terá sempre uma taxa maior que a esperada, quando se
procede ao varrimento para taxas altas, mas o valor de P poderá ser próximo de um.
Para cada local ou tamanho de janela utilizado, a hipótese alternativa é a de que existe uma taxa superior, inferior ou quer superior quer inferior, dentro da janela quando comparada com a área exterior.
Este teste estatístico recorre a dois modelos probabilísticos diferentes, baseados nas distribuições de Bernoulli e Poisson.
Para o modelo de Poisson utilizado neste estudo, uma vez que as taxas de incidência/prevalência são reduzidas, assumiu-se que o número de casos em cada local ou dentro de cada área tem uma distribuição de Poisson. Sob a hipótese nula, o número de casos esperados em cada local é proporcional ao tamanho da população ou à população-tempo em risco nesse local.
Para este modelo, é necessário definir para cada freguesia, as coordenadas geográficas dos seus centróides e para cada período de tempo, a população e o número de novos casos. No estudo em causa, recorreu-se às coordenadas existentes nos mapas administrativos do distrito de Castelo Branco, disponibilizados pelo Centro Nacional de Informação Geográfico, no programa Mapex.
Se \(n_z \) representa o número de casos dentro do círculo \(Z \) e \(\mu (Z) \), o número de casos esperados sob a hipótese nula e \(N \), o número total de casos observados, no modelo de Poisson, o teste estatístico é definido por (Kuldorff et al., 1998):

\[
\frac{L(Z)}{L_0} = \left(\frac{n_z}{\mu(Z)} \right)^n \left(\frac{N - n_z}{N - \mu(Z)} \right)^{N-n_z} \left(\frac{N}{\mu(Z)} \right)^N
\]

O resultado desta fórmula aplica-se se \(n_z > \mu (Z) \), caso contrário será igual a 1. \(L \) constitui o número de áreas definidas (número de freguesias).
Quando o diâmetro da janela varia (por exemplo, reflectindo uma mudança no tamanho da população), o teste estatístico permite fazer um ajustamento em
relação à falta de homogeneidade, utilizando o teste de verosimilhança sobre todos os possíveis círculos, condicionado pelo número total de casos (N).

A função de verosimilhança é maximizada em todas as janelas, identificando a janela que constitui com maior probabilidade, um agregado de doença, e que com menor probabilidade se deve ao acaso. No modelo de Poisson, a função de verosimilhança para uma janela específica é proporcional a:

\[(n/\mu)^n \left(\frac{N-n}{N-\mu}\right)^{(N-n)}\]

em que N é o número total de casos ocorridos em toda a área, n é o número de casos dentro da janela (Kuldorff et al., 1998).

A sua distribuição sob a hipótese nula e o correspondente valor de P é obtido pela repetição do mesmo exercício analítico num grande número de replicações aleatórias de dados gerados sob a hipótese nula, numa simulação de Monte Carlo (o teste estatístico é calculado para cada replicação aleatória assim como para os dados reais, e se estes últimos estiverem entre os 5 % mais altos, então, o teste é significativo a um nível de significância de 0,05).

O método identifica agregados secundários, que ordena de acordo com o seu rácio de verosimilhança. O programa StaTSscan (versão 2.3.1) reporta estes agregados se (1) têm o maior rácio de verosimilhança num centróide em particular e (2) se não existe sobreposição com o agregado mais provável nem com o agregado secundário definido anteriormente.

5.2.12 Risco Relativo de ocorrência de focos de brucelose por freguesia

O programa Statscan (versão 2.3.1) permite calcular e apresentar o número de casos, o número de casos esperados e o risco relativo para cada uma das áreas em estudo. A informação produzida é puramente descritiva.

No estudo em causa, o risco relativo foi calculado para todo o período de estudo (1994 – 1999) permitindo uma análise detalhada dos agregados identificados.
Foram utilizados os dados da incidência anual de rebanhos positivos, em cada uma das freguesias estudadas.

5.2.13 Classificações sanitárias de rebanho

No mês de Março de cada ano, altura em que os resultados da serologia e as classificações sanitárias estariam já registadas na base de dados, foi feita uma listagem dos produtores e respectivas classificações sanitárias, a partir do P.I.S.A. para registo na base de dados.
A evolução das classificações sanitárias pode ser analisada segundo duas perspetivas:

1) Comparando, ano a ano, a classificação atribuída no final, que é a metodologia mais usual;
2) Comparando a classificação sanitária atribuída no final de cada ano em relação à que cada rebanho tinha no início do mesmo ano.

Para avaliação do Programa de Erradicação em curso, a última metodologia é mais correcta, porque muitos rebanhos saneados num determinado ano, não o são no ano seguinte, e outros são saneados pela primeira vez. Desta forma, é possível aferir com maior rigor, o impacto das medidas tomadas em cada ano do programa, uma vez que apenas se consideram, os rebanhos classificados em cada ano.
As classificações sanitárias são apresentadas em função das classificações oficiais atribuídas a cada rebanho no final de cada ano. No entanto, algumas das classificações sanitárias foram alteradas, nomeadamente nos rebanhos não saneados no ano anterior, cuja classificação foi a de B1 no início do ano. A todos os rebanhos saneados pela primeira vez, foi-lhes atribuída a classificação de B1 em relação à classificação do início do ano. Também, todos os rebanhos classificados como infectados mas que no final do ano viram a sua classificação ser alterada para B1, mantiveram a classificação de B21 (infectados).
Não foram considerados os rebanhos não saneados para definir o perfil de classificações sanitárias em relação a cada ano em estudo, apesar das listagens fornecidas conterem cerca de 6000 nomes, na maioria com classificação sanitária. Para além das classificações sanitárias definidas na legislação, foram consideradas mais duas classes: (i) os rebanhos sem classificação sanitária (nas listagens não está definida a classificação sanitária – “campo em branco”) e (ii) os “Não Constam” (corresponde aos produtores cujo nome não consta das listagens e não foi possívelclarificar se foi registado com outro nome).

5.3 Apresentação e discussão dos resultados

5.3.1 Número de rebanhos e de animais saneados

O número de rebanhos saneados na área de intervenção da OPP – Ovibeira, variou entre 1584 rebanhos em 1994 e 1231 rebanhos, em 1997 (Gráfico n.º 3).

![Gráfico n.º 3 - Evolução do número de rebanhos saneados na área de intervenção da OPP – Ovibeira (1994 – 1999)
As oscilações observadas relativamente ao número de rebanhos saneados anualmente resultou, em parte, da aplicação da Portaria 769/92, de 7 de Agosto, que obriga ao pagamento das acções de colheita de sangue, no valor de 250$00 + I.V.A. por animal, no caso dos pequenos ruminantes, a suportar pelos produtores não associados na OPP. Até 1995, a Lei não foi aplicada, mas por imposição do Ministério da Agricultura passou a ser efectuada a cobrança pelo Médico Veterinário Executor, o que criou por parte destes uma certa relutância na execução destas acções. Por outro lado, os produtores não aceitaram o pagamento das acções, furtando-se a apresentar os animais para o saneamento.

Posteriormente, a inscrição de muitos desses produtores como sócios da Associação, aliado às exigências que progressivamente se foram verificando para a obtenção de subsídios e indemnizações compensatórias, permitiu inverter a situação nos últimos dois anos.

O número de animais saneados aumentou progressivamente ao longo dos anos (Gráfico n.º 4), como reflexo de um investimento feito por parte dos produtores, sobretudo com o aparecimento de queijarias industriais, que de algum modo revitalizaram o mercado, sobretudo em aspectos ligados à comercialização, perspectivando um aumento da rentabilidade das explorações pecuárias.

No que se refere às colheitas de sangue para exame serológico, o seu número ultrapassou sempre as 200000 colheitas, com exceção de 1996, com um total 194566 colheitas (Gráfico n.º 4).

O número de rebanhos de caprinos diminuiu até 1997, embora se observe uma inversão da tendência nos dois últimos anos (Gráfico n.º 5). O número de rebanhos de ovinos cresceu de ano para ano, enquanto o número de rebanhos mistos, com ovinos e caprinos, tem-se mantido estável, representando cerca de 20% do total de rebanhos da região.

Gráfico n.º 5 - Distribuição dos rebanhos por espécie animal (1994 – 1999)

Em termos do número de animais, observa-se um número crescente de ovinos, embora em termos médios, o seu número por rebanho tenha vindo a diminuir (Gráfico n.º 6). O número de caprinos não tem sofrido grandes oscilações, enquanto o número de animais nos rebanhos mistos tem vindo a diminuir, assim como a sua média por rebanho.

Em 1999, os caprinos representaram 26 % dos animais os rebanhos mistos. Em 50 % destes rebanhos, os caprinos representavam 16 % do total de animais, e em 75 % dos mesmos, apenas 36 % dos animais presentes eram caprinos. Estes números são praticamente idênticos aos que se registaram em 1998.
Gráfico n.º 6 – Número de animais por espécie animal (1994 – 1999)

Em termos médios, o número de caprinos por rebanho tem vindo a diminuir, sendo de 10 em 1999. Em relação aos ovinos, o seu número tem oscilado à volta dos 200 animais por rebanho, enquanto que o número de animais por rebanho misto tem sofrido um aumento quase constante desde 1994, aproximando-se dos 300 animais por rebanho em 1999 (Gráfico n.º 7).

Gráfico n.º 7 - Média de animais por espécie de rebanho (1994 – 1999)
O maior número de rebanhos intervencionados concentra-se no concelho de Castelo Branco (Figura n.º 13), representando 54,9 % do total de rebanhos saneados na área da OPP – Ovibeira, em 1999. Nesse mesmo ano, observou-se uma redução significativa de rebanhos saneados em Vila Velha de Rodão.

Os concelhos de Idanha-a-Nova e Castelo Branco têm sensivelmente o mesmo número de animais submetidos ao controlo serológico. No entanto, enquanto no concelho de Idanha-a-Nova o número de animais manteve-se estável ao longo dos anos, em Castelo Branco observou-se um crescimento progressivo, de 73406 para 87163 animais, entre 1994 e 1999.

Em média, os rebanhos em Idanha-a-Nova ultrapassam os 200 animais/rebanho e em Castelo Branco esse número é da ordem dos 100 animais/rebanho. Em relação a Vila Velha de Rodão, o número total de animais saneados tem-se mantido em redor dos 10000 animais, representando entre 5 a 6 % dos animais da região, cuja média de animais/rebanho atingiu o seu máximo em 1999, com 42 animais/rebanho.

Em termos de espécie animal (Figura n.º 13), os rebanhos de caprinos assumem maior importância nos concelhos de Castelo Branco e de Vila Velha de Rodão, particularmente neste último. Em Castelo Branco, em termos percentuais, após uma descida observada entre 1994 e 1998, registou-se um ligeiro aumento em 1999. Em relação ao número de animais, em Vila Velha de Rodão representam pouco mais de 20 % do total de animais do concelho, em Castelo Branco cerca de 6 % e em Idanha-a-Nova apenas 2 %. Em termos médios, os rebanhos de caprinos só ultrapassam os 20 animais por rebanho no concelho de Idanha-a-Nova.

Em Idanha-a-Nova e em Vila Velha de Rodão, a percentagem de animais integrados em rebanhos mistos, apesar de diminuir ao longo dos anos, ainda representava mais de 30 % entre 1994 e 1999, no concelho de Idanha-a-Nova e 20 % em Vila Velha de Rodão.
Figura n.º 13 – Estrutura dos rebanhos, por concelho

A distribuição dos rebanhos e dos animais por freguesia, pode ser observada nas Figuras n.º 14 e 15. Nas freguesias mais ocidentais, o número de rebanhos é relativamente grande mas com um encabeçamento muito baixo, reflexo de uma área muito florestada, onde os caprinos predominam, funcionando como um complemento importante para o rendimento da exploração. Produzem leite, carne e ajudam a limpar as matas. Trata-se de rebanhos cuja produção se destina fundamentalmente ao autoconsumo.

Nessas freguesias observam-se oscilações no número de rebanhos saneados, de ano para ano, devido à existência de um maior número de produtores não associados da O.P.P, com encabeçamentos baixos por rebanho. Estas flutuações afectam a incidência e a prevalência, ao longo dos anos, assim como as classificações sanitárias.

Nas restantes freguesias, o número de rebanhos é inferior a 50, exceptuando as freguesias de Idanha-a-Nova e de Monsanto. Nesta última, predominam os rebanhos de caprinos (58% do total de rebanhos em 1999), excepção no concelho de Idanha-a-Nova.

Não existindo um sistema de controlo sobre o número de rebanhos, não é possível calcular a taxa de cobertura de saneamento na área em estudo. Os censos do I.N.E. são realizados de 10 em 10 anos e o registo de produtores é feito para determinar o número de produtores que possuem ovinos e os que possuem caprinos, não sendo registado quem tem ambas as espécies.

Apesar da dificuldade existente na identificação dos proprietários dos rebanhos, cruzámos a informação sobre os rebanhos saneados e as listagens produzidas pelo I.N.G.A.. Assim, determinámos a proporção de rebanhos com um número de animais inferior ao limite das quotas atribuídas por produtor, no âmbito das indemnizações compensatórias.
Figura n.º 14 – Distribuição do número de rebanhos e de animais por freguesia
Figura n.º 15 - Número médio de animais por rebanho e por freguesia
No entanto, uma vez que o produtor deve apresentar até 80 % dos animais com direito ao prémio e só é obrigado a manter esse número durante o chamado “período de retenção” (3 meses), as proporções apresentadas teriam significado se correspondersem a esse período de retenção e qualquer análise destes números deverá reter este aspecto.

A partir de 1996, alguns dos produtores venderam ou perderam o direito ao prémio dos pequenos ruminantes embora continuem a fazer parte das listagens oficiais e alguns possuam animais. Com algumas oscilações, não contabilizando os produtores já sem direito ao prémio, cerca de 13,4 % dos produtores apresenta menos de 80 % dos animais que deveria possuir em relação ao limite de quotas atribuído em 1999 (Tabela n.º 25).

<table>
<thead>
<tr>
<th></th>
<th>Total Rebanhos*</th>
<th>0%</th>
<th>1 a 50 %</th>
<th>51 a 60 %</th>
<th>61 a 70 %</th>
<th>71 a 79 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>679</td>
<td>-</td>
<td>3,5</td>
<td>6,0</td>
<td>9,0</td>
<td>13,3</td>
</tr>
<tr>
<td>1996</td>
<td>617</td>
<td>0,2</td>
<td>4,8</td>
<td>6,9</td>
<td>10,0</td>
<td>13,7</td>
</tr>
<tr>
<td>1997</td>
<td>778</td>
<td>8,4</td>
<td>2,6</td>
<td>3,3</td>
<td>4,1</td>
<td>7,9</td>
</tr>
<tr>
<td>1998</td>
<td>805</td>
<td>5,8</td>
<td>3,0</td>
<td>5,4</td>
<td>7,6</td>
<td>11,8</td>
</tr>
<tr>
<td>1999</td>
<td>708</td>
<td>4,9</td>
<td>5,3</td>
<td>7,0</td>
<td>9,0</td>
<td>13,4</td>
</tr>
</tbody>
</table>

* rebanhos submetidos a saneamento e identificados com número de I.N.G.A.

Tabela n.º 25 - Percentagem de rebanhos com limite inferior às quotas atribuídas por rebanho

Os problemas de identificação surgem sobretudo no concelho de Vila Velha de Rodão e nalgumas freguesias do concelho de Castelo Branco. No primeiro, 7,2 % dos produtores deixaram de possuir quotas, percentagem superior ao registado nos concelhos de Castelo Branco (4,9 %) e de Idanha-a-Nova (3,8 %) em 1999.

É também no concelho de Vila Velha de Rodão que se regista uma maior percentagem de rebanhos com um número inferior a 80 % do limite atribuído, sendo o seu máximo de 28,8 % em 1999. Essa percentagem é inferior em Castelo Branco e Idanha-a-Nova, respectivamente, 11,8 % e 8,3 %.

A aplicação do Regulamento (CEE) n.º 3887/92 da Comissão, de 23 de Dezembro de 1992 (Art.º 4) e do Regulamento (CEE) n.º 3508/92 do Conselho (Art.º 6) que
determinam que a totalidade das parcelas culturais que constituem as explorações agrícolas dos produtores que se candidatam às ajudas compensatórias devem ser identificadas, localizadas e referenciadas geograficamente de modo a possibilitar a atribuição de um número de identificação a cada uma das parcelas culturais.

O Sistema Integrado de Gestão e Controlo (SIGC) foi implementado em 1995. Este sistema, sob a responsabilidade do I.N.G.A., poderá no futuro, contribuir para aumentar a eficácia de controlo dos rebanhos existentes em cada região, precisar a sua localização geográfica e contribuir para calcular com maior rigor a taxa de cobertura sanitária de cada uma das regiões.

5.3.2 Marcação e abate dos animais reagentes

Alguma informação poderia ser obtida no matadouro, mas parte dos abates são realizados em matadouros fora da região, onde por sua vez, é difícil obter os dados.

Em 1994 e 1995, o tempo médio de comunicação dos resultados laboratoriais foi de 6 a 7 dias, após o saneamento. Este intervalo de tempo, similar para o restante do período de estudo, varia sobretudo em função da aplicação da prova da Fixação do Complemento.

A marcação dos animais reagentes foi feita em 1994, 19 ± 4,41 dias, após a data de saneamento, e em 1995, com um intervalo de 16 ± 12,9 dias. No entanto, nalguns rebanhos, o intervalo foi superior a 3 meses. O mesmo aconteceu em relação ao abate, embora em termos médios, o intervalo que decorreu desde o dia de saneamento e o de abate dos reagentes, tenha sido de 28 ± 17,52 dias e 22 ± 11,92 dias em 1994 e 1995, respectivamente.
Estes períodos, considerados como importantes para avaliar o sucesso de um Programa de Erradicação, terão contudo uma importância relativa. Para além da legislação, que impede que o rebanho seja saneado antes que os reagentes sejam removidos para abate, pensamos que o risco que estes animais representam para o rebanho está circunscrito ao período do parto. Assim, a legislação deveria contemplar, a necessidade de os animais serem abatidos antes da parição, e não focalizar a atenção, apenas no facto de os animais serem abatidos para se poder proceder a novas colheitas de sangue no rebanho. Além disso, os abates não dependem dos produtores, não devendo estes ser penalizados pela manutenção prolongada de animais seropositivos no rebanho.

O contingente de animais abatidos, representou 90,18 % e 91,37 % dos animais reagentes às provas sorológicas, em 1994 e 1995.

Este aspecto é relevante, uma vez que a manutenção de animais seropositivos nos rebanhos representa um risco para os restantes animais do rebanho e para a Saúde Pública. Parte dos animais reagentes não abatidos ficaram nas explorações por dificuldades na sua identificação ou por falta de registo dos animais positivos na base de dados.

5.3.3 Prevalência aparente de rebanhos positivos

Se considerarmos os rebanhos com animais reagentes às provas sorológicas em pelo menos uma das colheitas efectuadas, a prevalência aparente de rebanhos positivos estabilizou entre 5 a 6 %, após 1996 (Gráfico n.º 8).

No entanto, nem todos os rebanhos com animais seropositivos foram classificados como infectados, pelo que os resultados positivos à serologia, não confirmam a existência de brucelose no rebanho. Assim, no caso do estatuto sanitário não ser alterado, de forma a que o rebanho seja classificado como infectado, assumem-se esses resultados como falso-positivos, mesmo se entretanto, os animais já tenham sido abatidos. A prevalência aparente de rebanhos positivos, calculada pelo rácio entre o número de rebanhos considerados infectados (incluindo os não saneados...
nesse ano) e o número total de rebanhos saneados anualmente, variou entre 4 e 5%.

![Graph](image)

*Prevalência aparente (N.º de rebanhos com sorologia positiva/N.º total de rebanhos)

**Prevalência aparente (N.º de rebanhos infectados/N.º total de rebanhos)

Gráfico n.º 8 - Evolução da prevalência de rebanhos positivos (1994 – 1999)

Dos três concelhos investigados, o de Vila Velha de Rodão apresenta as prevalências mais baixas, com um máximo de 1,39 % em 1995, e inferior a 1 % nos outros anos (Gráfico n.º 9). Em Castelo Branco registaram-se valores entre os 5 e os 6 %, com a prevalência mais baixa em 1994 (3,64 %). Em Idanha-a-Nova, houve uma diminuição muito considerável da prevalência a nível de rebanho; 22% (1994) para 6 % (1999).

![Graph](image)

*Prevalência Aparente (N.º de rebanhos com sorologia positiva/N.º total de rebanhos)

Gráfico n.º 9 - Evolução da prevalência de rebanhos positivos a nível de concelho
Se considerarmos apenas os rebanhos infectados, as prevalências são inferiores às anteriormente referidas (Gráfico n.º 10).

![Gráfico n.º 10 - Evolução da prevalência de rebanhos positivos a nível de concelho](image)

** Prevalência aparente (N.º de rebanhos infectados/N.º total de rebanhos)

Em relação às freguesias, a prevalência de rebanho é mais baixa nas freguesias de Vila Velha de Rodão e nas que se situam a ocidente no concelho de Castelo Branco (Figura n.º 16).

Algumas das freguesias como a Lardosa, Monforte da Beira, Aldeia de Santa Margarida, Salvaterra do Extremo e Rosmaninhal apresentam prevalências de rebanho mais elevadas.

Nos rebanhos de caprinos, a prevalência tem-se mantido inferior à observada nos rebanhos de ovinos e mistos. Nestes últimos, a prevalência de rebanhos positivos tem sofrido oscilações ao longo dos anos, mas nos últimos dois anos, com tendência para diminuir (Gráfico n.º 11). Em ambos estes tipos de rebanho, a prevalência diminuiu para metade de 1994 para 1999, enquanto que nos rebanhos de caprinos, a prevalência é sensivelmente igual.
Figura n.º 16 – Prevalência de rebanhos positivos por freguesia
5.3.4 Prevalência aparente a nível animal

A prevalência aparente a nível animal (Tabela n.º 26) sofreu uma redução de 1994 para 1996, ano em que se inverteu esta situação (A). Sempre que se considera como negativos os soros classificados no laboratório como prejudicados (B e D), o valor da prevalência é menor.

Por outro lado, se considerarmos todos os resultados sorológicos (C), independentemente do número de colheitas, o valor da prevalência aumenta em relação à prevalência obtida apenas com os resultados da 1ª colheita. As diferenças observadas dependem do número de colheitas efectuadas e da classificação sanitária desses rebanhos. A metodologia utilizada no cálculo da prevalência pode implicar opções sanitárias diferentes com implicações várias, nomeadamente, económicas.
<table>
<thead>
<tr>
<th>Ano</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>0,87</td>
<td>0,83</td>
<td>0,95</td>
<td>0,92</td>
</tr>
<tr>
<td>1995</td>
<td>0,60</td>
<td>0,59</td>
<td>0,79</td>
<td>0,78</td>
</tr>
<tr>
<td>1996</td>
<td>0,59</td>
<td>0,59</td>
<td>0,99</td>
<td>0,98</td>
</tr>
<tr>
<td>1997</td>
<td>0,82</td>
<td>0,81</td>
<td>1,01</td>
<td>1,00</td>
</tr>
<tr>
<td>1998</td>
<td>0,98</td>
<td>0,98</td>
<td>1,37</td>
<td>1,36</td>
</tr>
<tr>
<td>1999</td>
<td>1,11</td>
<td>1,10</td>
<td>1,22</td>
<td>1,21</td>
</tr>
</tbody>
</table>

*A (Reagentes 1ª colheita / N.º de soros 1ª colheita - prejudicados); B - (Reagentes 1ª colheita / N.º de soros 1ª colheita); C - (Total de reagentes / N.º total de soros – prejudicados); D - (Total de reagentes / N.º total de soros).

Tabela n.º 26 - Evolução da prevalência aparente a nível animal

Observa-se um ligeiro aumento da prevalência aparente nos concelhos de Castelo Branco e Idanha-a-Nova, situando-se em 1999 acima do 1%. O concelho de Vila Velha de Rodão apresenta valores bastante mais baixos, embora tenha havido um ligeiro aumento em 1999 (Tabela n.º 27 - A).

São visíveis as diferenças observadas consoante a metodologia de cálculo da prevalência. Por exemplo, no ano de 1996, no concelho de Idanha-a-Nova, a prevalência aparente duplicou quando se considera o total de soros no denominador.

<table>
<thead>
<tr>
<th>Ano</th>
<th>Castelo Branco</th>
<th>Idanha-a-Nova</th>
<th>Vila Velha de Rodão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A*</td>
<td>B*</td>
<td>A*</td>
</tr>
<tr>
<td>1994</td>
<td>0,83</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td>1995</td>
<td>0,68</td>
<td>0,92</td>
<td>0,58</td>
</tr>
<tr>
<td>1996</td>
<td>0,68</td>
<td>0,83</td>
<td>0,59</td>
</tr>
<tr>
<td>1997</td>
<td>0,92</td>
<td>0,96</td>
<td>0,82</td>
</tr>
<tr>
<td>1998</td>
<td>0,91</td>
<td>1,23</td>
<td>1,17</td>
</tr>
<tr>
<td>1999</td>
<td>1,23</td>
<td>1,24</td>
<td>1,09</td>
</tr>
</tbody>
</table>

*A (Reagentes 1ª colheita / N.º de soros 1ª colheita - prejudicados); B – (Total de reagentes / N.º total de soros – prejudicados).

Tabela n.º 27 - Prevalência aparente a nível animal por concelho
Os rebanhos só com caprinos apresentam os valores de prevalência mais baixos, enquanto nos rebanhos mistos e só com ovinos, a prevalência aparente exibe pequenas oscilações ao longo dos anos, sendo superior à observada nos caprinos (Tabela n.º 28).

<table>
<thead>
<tr>
<th>Ano</th>
<th>Caprinos</th>
<th>Ovinos</th>
<th>Mistos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A*</td>
<td>B*</td>
<td>A*</td>
</tr>
<tr>
<td>1994</td>
<td>0,13</td>
<td>0,27</td>
<td>1,22</td>
</tr>
<tr>
<td>1995</td>
<td>0,04</td>
<td>0,04</td>
<td>0,52</td>
</tr>
<tr>
<td>1996</td>
<td>0,10</td>
<td>0,10</td>
<td>0,65</td>
</tr>
<tr>
<td>1997</td>
<td>0,24</td>
<td>0,23</td>
<td>0,89</td>
</tr>
<tr>
<td>1998</td>
<td>0,04</td>
<td>0,07</td>
<td>0,86</td>
</tr>
<tr>
<td>1999</td>
<td>0,12</td>
<td>0,12</td>
<td>1,35</td>
</tr>
</tbody>
</table>

*A (Reagentes 1ª colheita / N.º de soros 1ª colheita - Prejudicados); B – (Total de reagentes / N.º total de soros – Prejudicados).

Tabela n.º 28 - Prevalência aparente a nível animal por espécie animal

A prevalência de brucelose a nível animal por freguesia, de uma forma geral, não ultrapassa os 2 %, verificando-se valores mais elevados nalgumas freguesias como resultado das oscilações observadas no número de rebanhos e de animais submetidos a controlo (Figura n.º 17).

A freguesia da Lardosa (Castelo Branco) e do Rosmaninhal (Idanha-a-Nova) são consideradas como as mais problemáticas, com um número considerável de explorações infectadas e prevalências a nível animal e de rebanhos positivos relativamente elevadas.

As freguesias de Salvaterra do Extremo e Aldeia de Santa Margarida (Idanha-a-Nova) têm alguns rebanhos com uma prevalência intra-rebanho elevada, e como são duas freguesias com poucos rebanhos, também têm uma prevalência de rebanhos positivos alta.

Nas restantes freguesias, há uma grande dispersão dos animais reagentes pelas explorações, resultando em prevalências intra-rebanho baixas. Por vezes um único rebanho com um número elevado de reagentes, numa freguesia em que o número de rebanhos submetido a saneamento é baixo, resulta num valor elevado de ambas
Figura n.º 17 - Prevalência da brucelose a nível Animal por freguesia
prevalências, como por exemplo, a freguesia do Ninho do Açor (Castelo Branco) em 1994.
Em relação ao tamanho de rebanho, a prevalência a nível animal, ao longo dos anos em estudo (Gráfico n.º 12) manteve-se sem variações importantes. Nos rebanhos com menos de 10 animais não se registaram focos de brucelose. Com duas exceções, os resultados positivos aos testes serológicos foram obtidos em animais de pastores que estavam integrados em rebanhos de maior dimensão. A prevalência exibe uma tendência para crescer até rebanhos com 600 a 700 animais, reduzindo-se posteriormente. No entanto, é necessário considerar que a distribuição do número de rebanhos e mesmo do número de animais não é uniforme em relação aos encabeçamentos referenciados.

![Gráfico n.º 12 - Prevalência a nível animal em função do tamanho de rebanho (1994 –1999)](image)

IC – Intervalo de confiança; + (superior) – (inferior)

5.3.5 Coeficiente de correlação intra-rebanho

O coeficiente de correlação intra-rebanho apresenta valores muito próximos de zero quando calculados para a Região, nos concelhos de Castelo Branco e de Idanha-a-Nova, e ainda, nos rebanhos de ovinos e rebanhos mistos. O que sugere
que a doença está uniformemente distribuída pelos rebanhos da região, e justifica as diferenças observadas entre as prevalências a nível de rebanho e de animal.

A nível de freguesia, os resultados revelaram uma distribuição uniforme da doença. No entanto, em 1994, houve algumas freguesias onde a doença demonstrou uma tendência para agregar-se em alguns rebanhos: Freixial do Campo (0,87), Idanha-a-Velha (0,99), Monfortinho (0,99), Ninho do Açor (0,5), Sobral do Campo (0,43), Perais (0,38) e S. Vicente da Beira (0,28). Nos restantes anos, houve igualmente algumas freguesias onde se verificou a mesma tendência: Em 1998, nas freguesias do Fratel (0,85) e do Sobral do Campo (0,31), e a freguesia da Lousa (0,38), em 1999.

Nos rebanhos de caprinos, os valores obtidos revelam uma tendência para a doença se agregar em certos rebanhos. Entre 1994 e 1998, o coeficiente de correlação intra-rebanho foi \(-0,5\), com excepção de 1996 (0,1).

Os valores obtidos no concelho de Vila Velha de Rodão, em algumas freguesias e nos rebanhos de caprinos sugerem uma tendência para a doença se perpetuar nalguns rebanhos. Os anos em que o coeficiente de correlação intra-rebanho se aproximou de 0, expressando uma distribuição uniforme da doença na região, podem ser justificados por:

- Identificação incorrecta nas folhas de campo da espécie animal presente no rebanho, havendo um menor número de rebanhos registados como caprinos;
- Correspondendo os rebanhos de caprinos a rebanhos de menor dimensão, e entre estes sendo irregular a presença no acto de saneamento, podem causar variações na prevalência. Quando não são saneados, diminui o denominador, e vice-versa, se são saneados;
- A baixa prevalência intra-rebanho associada à falta de especificidade dos testes de diagnóstico utilizados (aumenta o numerador, devido à presença de falsos positivos). A especificidade do Rosa Bengala e da Fixação do Complemento está descrita como sendo de 0,99 para ambos os testes em soros de pequenos ruminantes (Blasco et al., 1994b; Mikolon et al., 1998), valores que poderão estar sobrestimados. Quando a prevalência atinge um valor igual ou inferior ao da falta de especificidade (1 – Especificidade), o protocolo de aplicação dos testes deixa de ser eficaz, uma vez que a probabilidade de ocorrência de falsos positivos aumenta.

Este último aspecto, poderá justificar os valores negativos obtidos para o coeficiente de correlação intra-rebanho, no ano de 1999, no concelho de Vila Velha de Rodão, em algumas freguesias e nos rebanhos de caprinos. A correlação negativa indica que a doença não tende a agregar-se (Donald, 1993) e deve considerar-se ρ como sendo igual a 0 (McDermott and Schukken, 1994). É provável que os valores do coeficiente de correlação intra-rebanho possam ter sido afectados pela variação do número de rebanhos saneados anualmente, sendo provável que os valores calculados sejam diferentes caso todos os rebanhos de cada freguesia fossem saneados anualmente.

5.3.6 Incidência de rebanhos positivos

A incidência de rebanhos positivos fixou-se em 1,35 % em 1999, valor semelhante ao obtido em 1998 (Gráfico n.º 12). Se considerarmos os rebanhos com reagentes, independentemente da classificação sanitária atribuída, a incidência ascende a 3,04 % em 1999.

A nível de concelho, a incidência assume particular importância em Idanha-a-Nova, onde os valores ainda não baixaram dos 2 % (Tabela n.º 29). A percentagem de rebanhos com reagentes às provas serológicas é elevada, com excepção de Vila Velha de Rodão.

Qualquer que seja a metodologia utilizada para o cálculo da incidência, tal como para a prevalência, sobrestima o seu valor, porque um número apreciável de rebanhos não são saneados anualmente, rebanhos que se pressupõe ser indemnes.

<table>
<thead>
<tr>
<th>Ano</th>
<th>Castelo Branco</th>
<th>Idanha-a-Nova</th>
<th>Vila Velha de Rodão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incidência*</td>
<td>Incidência**</td>
<td>Incidência*</td>
</tr>
<tr>
<td>1994</td>
<td>4,15</td>
<td>2,85</td>
<td>20,92</td>
</tr>
<tr>
<td>1995</td>
<td>3,05</td>
<td>0,80</td>
<td>7,72</td>
</tr>
<tr>
<td>1996</td>
<td>2,26</td>
<td>0,61</td>
<td>3,32</td>
</tr>
<tr>
<td>1997</td>
<td>3,55</td>
<td>2,53</td>
<td>7,49</td>
</tr>
<tr>
<td>1998</td>
<td>2,32</td>
<td>0,62</td>
<td>8,38</td>
</tr>
<tr>
<td>1999</td>
<td>3,08</td>
<td>1,23</td>
<td>4,25</td>
</tr>
</tbody>
</table>

Incidência * - Número de rebanhos com reagentes (não infectados no início do ano) / N.º total de rebanhos (não infectados); Incidência ** - Número total de novos rebanhos infectados / N.º total de rebanhos (não infectados)

Tabela n.º 29 – Incidência de rebanhos positivos (concelho)
Anualmente são mais de 30 as freguesias com a incidência igual a 0, com exceção do ano de 1994 (Figura n.º 18).

5.3.7 Dinâmica da doença, variação da incidência e variação do tempo despendido para extinguir os focos de brucelose.

A dinâmica de doença (Figura n.º 19) revela as dificuldades de extinguir a brucelose nalguns rebanhos, em freguesias como Aldeia de Santa Margarida, Medelim, Monforte da Beira, Rosmaninhāl e Lardosa, especialmente nas três últimas.
A variação da incidência (Figura n.º 20) revela uma vasta área na região onde a brucelose é endémica, o que é reforçado e consistente com os coeficientes de correlação intra-rebanho referidos, denotando a possibilidade de aparecimento de novos focos em qualquer local e rebanho da região. Este aspecto está naturalmente relacionado com práticas de maneio comuns à generalidade da região, e cujos factores de risco são discutidos no Capítulo 7. No entanto, reforça a argumentação da necessidade de se modificarem algumas práticas de maneio a nível dos rebanhos, de aumentar a responsabilidade do Médico Veterinário Assistente na implementação dessas práticas, e com isso contribuir de forma decisiva para a erradicação da brucelose na região.
Em 1999, aumentou a velocidade de extinção os surtos de doença, nos concelhos de Castelo Branco e Vila Velha de Rodão, enquanto que o concelho de Idanha-a-Nova a velocidade de extinção de focos de brucelose não exibiu variações em 1998 e 1999 (Figura n.º 21).
A taxa de incidência e a prevalência revelam que apesar de se observarem baixos valores para ambas e de não existir uma tendência para a ocorrência da brucelose em agregados, há contudo algumas freguesias onde se registou um número elevado de rebanhos infectados, por exemplo, o Rosmaninhāl e a Lardosa, e uma dispersão dos rebanhos infectados nas restantes freguesias (Figura n.º 22).
Figura n.º 18 – Incidência ao nível de rebanho, por freguesia
Figura n.º 19 – Dinâmica da brucelose nos pequenos ruminantes, na área investigada
Figura n.º 20 - Variação da Incidência de brucelose nos pequenos ruminantes, utilizando dois critérios diferentes (1998 e 1999)
Figura n.º 21- Variação do tempo despendido para extinguir os surtos de doença de brucelose nos pequenos ruminantes (1996 – 1999 – OPP Ovibeira)
5.3.8 Índice de Moran (Moran'I)

Os resultados obtidos no cálculo do índice de Moran confirmam que as taxas de infecção estão distribuídas pela região sem independência espacial, existindo uma tendência para a ocorrência dos focos de brucelose em agregados, se considerarmos a região no seu todo (Tabela n.º 30).

<table>
<thead>
<tr>
<th>Ano</th>
<th>Incidência*</th>
<th>Prevalência*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>0,240</td>
<td>0,289</td>
</tr>
<tr>
<td>1995</td>
<td>0,238</td>
<td>0,143</td>
</tr>
<tr>
<td>1996</td>
<td>0,169</td>
<td>0,213</td>
</tr>
<tr>
<td>1997</td>
<td>0,200</td>
<td>0,168</td>
</tr>
<tr>
<td>1998</td>
<td>0,255</td>
<td>0,169</td>
</tr>
<tr>
<td>1999</td>
<td>0,247</td>
<td>0,230</td>
</tr>
</tbody>
</table>

*Os valores que foram utilizados para determinar o Índice de Moran

Tabela n.º 30 – Índice de Moran (1994 a 1999)

5.3.9 Análise espaço/temporal

Foi definido um agregado espaço/temporal de casos de brucelose mais provável ($p = 0,001$) e um espacial ($p = 0,001$), para o período de 1994 a 1999 (Figura n.ºs 23 e 24). Foi ainda definido um agregado espaço/temporal secundário ($p = 0,001$) que inclui todas as freguesias para o mesmo período de tempo. Um outro agregado espaço/temporal secundário foi definido em 1994, que incluía as freguesias do Ninho do Açor e do Freixial de Campo ($p = 0,964$) (ver Anexo II). O agregado de casos de brucelose mais provável engloba todo o concelho de Idanha-a-Nova, com excepção das freguesias de Penha Garcia e de Monfortinho, e as freguesias do concelho de Castelo Branco adjacentes ao concelho de Idanha-a-Nova.

É provável que os factores de risco associados à brucelose sejam os mesmos na área definida, pelo que as medidas de controlo da brucelose devem ser aplicadas
Figura n.º 22 - Número de rebanhos infectados observados por freguesia (1994 - 1999)

Figura n.º 23 – Análise espaço/temporal: Área que constitui o agregado de casos de doença mais provável (1994 – 1999)
Figura n.º 24 – Análise espacial: Área que constitui o agregado de casos de doença mais provável (1994 – 1999)

de forma igual em todas estas freguesias. Deste modo, a metodologia de aplicação dos testes serológicos adoptada para as freguesias da Lardosa e do Rosmaninhal deve ser extensiva às restantes freguesias do agregado definido.
O risco relativo de ocorrência de focos de brucelose confirma as freguesias da Lardosa, Monforte da Beira, Aldeia de Santa Margarida e Rosmaninhal como as mais problemáticas (Figura n.º 25).

5.3.10 Classificações sanitárias dos rebanho

As classificações sanitárias reflectem em primeira instância o sucesso de aplicação do Programa de Controlo e de Erradicação da Brucelose. Considerando as classificações sanitárias atribuídas no final de cada ano, observa-se uma diminuição dos rebanhos com classificação de B3 (indenmes), enquanto que a proporção de rebanhos B21 (infectados), se mantém estável (Gráfico n.º 13).

Gráfico n.º 14 - Evolução da classificação sanitária por ano (Final do ano)

No Gráfico n.º 14, não são apresentadas as percentagens de rebanhos sem classificação sanitária e os rebanhos cuja classificação sanitária não consta das
listagens oficiais. No entanto, embora o seu valor tenha sido de ≥ 1% em 1997 e em 1999, no ano de 1998 constituíam 6,11% do total de rebanhos saneados. Destacamos a elevada percentagem de rebanhos cuja classificação sanitária não permite estabelecer o seu verdadeiro estatuto sanitário (B22, B1, SC, NC). Estes rebanhos constituem um dos principais obstáculos à obtenção de um estatuto indemnne para a região.

Se considerarmos os estatutos sanitários no início do ano (Gráfico n.º 15), e os compararmos com os obtidos no final de cada ano (Gráfico n.º 14), é possível constatar que anualmente os rebanhos têm melhorado de estatuto, quando saneados. Note-se, por exemplo, como em 1999, os rebanhos B3 passaram de 46,39% no início do ano para 60,06% no final do ano. Houve, portanto, uma subida e não uma redução no número de rebanhos indemnes.

Gráfico n.º 15 - Evolução da classificação sanitária por ano (Início do ano)

A evolução que se observa no saneamento dos rebanhos é mais importante, quando se comparam as classificações sanitárias no início e no fim do ano. Este aspecto deve ser tido em conta, sobretudo quando se pretende avaliar o impacto das medidas tomadas anualmente, uma vez que uma proporção considerável de rebanhos não são saneados anualmente.

Considerando todas as classificações sanitárias atribuídas entre 1994 e 1999 (Tabela n.º 31), facilmente se constata que a legislação não foi cumprida no que
respeita à evolução sanitária dos rebanhos. Aliás, considerando a legislação e o número de colheitas anuais realizadas em cada rebanho infectado, não seria de esperar que 22% do total das classificações designadas como “infectados” tivesse evolvido directamente para indemne. Por outro lado, cerca de 61% das classificações sanitárias “B21” não se alteraram.

<table>
<thead>
<tr>
<th>CLASS. SANITÁRIA</th>
<th>NC</th>
<th>SC</th>
<th>B1</th>
<th>B21</th>
<th>B22</th>
<th>B3</th>
<th>Total (Ano Anterior)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0,07</td>
</tr>
<tr>
<td>SC</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>26</td>
<td>0,36</td>
</tr>
<tr>
<td>B1</td>
<td>19</td>
<td>89</td>
<td>38</td>
<td>23</td>
<td>1071</td>
<td>669</td>
<td>1909</td>
<td>26,61</td>
</tr>
<tr>
<td>B21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>179</td>
<td>50</td>
<td>65</td>
<td>295</td>
<td>4,11</td>
</tr>
<tr>
<td>B22</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>52</td>
<td>324</td>
<td>747</td>
<td>1126</td>
<td>15,69</td>
</tr>
<tr>
<td>B3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>55</td>
<td>99</td>
<td>3651</td>
<td>3814</td>
<td>53,16</td>
</tr>
<tr>
<td>Total – (Ano em Estudo)</td>
<td>24</td>
<td>93</td>
<td>45</td>
<td>310</td>
<td>1558</td>
<td>5145</td>
<td>7175</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>0,33</td>
<td>1,30</td>
<td>0,63</td>
<td>4,32</td>
<td>21,71</td>
<td>71,71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela n.º 31 - Evolução sanitária dos rebanhos (1994-1999)

Acresce, que no referido período, 1,24% das classificações “B1” e rebanhos sem classificação, assim como 4,62% das classificações “B22”, foram consideradas infectadas após o saneamento. Este valor ganha outra dimensão se perspectivarmos a introdução de animais em rebanhos com classificação indemne, com proveniência de rebanhos com classificação indefinida, e sobretudo quando os rebanhos com classificação de indemne não são saneados e mantém a classificação sanitária. Por outro lado, esses rebanhos constituem uma possível fonte de infecção para o Homem, uma vez que são rebanhos falso-negativos, se mantiverem a classificação oficial de “indemne”. Entre o aparecimento de animais infectados e o seu reconhecimento oficial pode, com facilidade, mediar o tempo suficiente para que casos humanos possam ocorrer em número que dependerá da forma como a doença evoluir no rebanho.
Observa-se alguma irregularidade na evolução anual das classificações sanitárias, fruto não só de um processo de classificação sanitária que não tem seguido as regras definidas pela legislação, como da alteração das medidas adoptadas, nomeadamente na interpretação dos resultados dos testes serológicos.
Anualmente, a maioria dos rebanhos mantém a classificação sanitária no final de cada ano (Gráfico n.º 16).

![Gráfico n.º 16 - Evolução das classificações sanitárias (1994 – 1999)](image)

Em termos dessa manutenção, há uma influência importante das explorações indemnes (Tabela n.º 32), e uma importância crescente das explorações infectadas até 1998.
A perda do estatuto indemne, foi em média, de 1,4 % para o estatuto infectado, enquanto, em média, 2,55 % dos rebanhos passaram a um estatuto sanitário oficial “não definido”, durante o período em estudo. Estes últimos, perderam majoritariamente, o estatuto indemne, sem razão aparente.
Nos rebanhos com estatuto sanitário não definido no início de cada ano, 2,24 % passou, em média, ao estatuto de rebanho infectado, no final do ano.
<table>
<thead>
<tr>
<th>ANO</th>
<th>B3-B3</th>
<th>B3-B21</th>
<th>B3-ESND</th>
<th>ESND-B3</th>
<th>ESND-B21</th>
<th>B21-B3</th>
<th>B21-B21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>91,62</td>
<td>3,41</td>
<td>4,97</td>
<td>63,80</td>
<td>4,17</td>
<td>41,54</td>
<td>36,92</td>
</tr>
<tr>
<td>1995</td>
<td>97,06</td>
<td>0,24</td>
<td>2,71</td>
<td>62,34</td>
<td>1,46</td>
<td>23,68</td>
<td>50,00</td>
</tr>
<tr>
<td>1996</td>
<td>98,12</td>
<td>0,94</td>
<td>0,94</td>
<td>49,61</td>
<td>0,78</td>
<td>10,00</td>
<td>74,00</td>
</tr>
<tr>
<td>1997</td>
<td>96,57</td>
<td>1,40</td>
<td>2,03</td>
<td>35,22</td>
<td>3,20</td>
<td>7,98</td>
<td>84,21</td>
</tr>
<tr>
<td>1998</td>
<td>96,95</td>
<td>1,19</td>
<td>1,85</td>
<td>40,30</td>
<td>1,82</td>
<td>2,04</td>
<td>97,96</td>
</tr>
<tr>
<td>1999</td>
<td>95,97</td>
<td>1,25</td>
<td>2,78</td>
<td>29,45</td>
<td>1,44</td>
<td>23,88</td>
<td>55,22</td>
</tr>
<tr>
<td>Média</td>
<td>96,16</td>
<td>1,35</td>
<td>2,49</td>
<td>47,04</td>
<td>2,24</td>
<td>20,29</td>
<td>62,61</td>
</tr>
</tbody>
</table>

* Valores apresentados em percentagem

Tabela n.º 32 - Evolução do estatuto sanitário dos rebanhos com estatuto definido (B3 e B21)

Enfatize-se de novo que, entre os rebanhos considerados como B1 no início do ano, 1,13 % estão infectados (Tabela n.º 33). Considerando que os rebanhos B1 são maioritariamente classificados como B22, ainda há que acrescentar mais 4,28 % de B22 que posteriormente passam a infectados. Ao longo do período em estudo, apenas 2 rebanhos B22, anteriormente com classificação de infectado, voltaram novamente a ter classificação de infectado.

<table>
<thead>
<tr>
<th>ANO</th>
<th>B1-B1</th>
<th>B1-B21</th>
<th>B1-B3</th>
<th>B1-B22</th>
<th>B22-B1</th>
<th>B22-B21</th>
<th>B22-B3</th>
<th>B22-B22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>3,10</td>
<td>0,34</td>
<td>30,69</td>
<td>65,86</td>
<td>0</td>
<td>6,29</td>
<td>82,10</td>
<td>31,37</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>0,00</td>
<td>49,19</td>
<td>50,81</td>
<td>0</td>
<td>3,04</td>
<td>76,52</td>
<td>85,09</td>
</tr>
<tr>
<td>1996</td>
<td>7,56</td>
<td>0,76</td>
<td>49,62</td>
<td>42,07</td>
<td>0,88</td>
<td>0,88</td>
<td>49,56</td>
<td>68,27</td>
</tr>
<tr>
<td>1997</td>
<td>1,32</td>
<td>2,98</td>
<td>38,41</td>
<td>51,32</td>
<td>1,92</td>
<td>3,85</td>
<td>25,96</td>
<td>48,67</td>
</tr>
<tr>
<td>1998</td>
<td>3,55</td>
<td>1,46</td>
<td>47,81</td>
<td>30,06</td>
<td>0,88</td>
<td>2,63</td>
<td>11,40</td>
<td>20,43</td>
</tr>
<tr>
<td>1999</td>
<td>1,36</td>
<td>1,02</td>
<td>19,15</td>
<td>77,12</td>
<td>0</td>
<td>3,27</td>
<td>65,36</td>
<td>11,62</td>
</tr>
<tr>
<td>Média</td>
<td>2,95</td>
<td>1,13</td>
<td>37,29</td>
<td>54,99</td>
<td>0,32</td>
<td>4,28</td>
<td>64,81</td>
<td>30,59</td>
</tr>
</tbody>
</table>

* Valores em percentagem

Tabela n.º 33 - Evolução da classificação sanitária dos rebanhos com estatuto não definido (B1 e B22)

Os rebanhos com estatuto não definido são sobretudo de pequena dimensão e vocacionados para o autoconsumo. O contacto entre animais de vários rebanhos é
grande no período de cobrição. Estes produtores tendem a não estar associados na OPP e não submetem os rebanhos a controlo serológico todos os anos, o que dificulta a detecção da infecção, pois os animais são abatidos localmente para autoconsumo.

Anualmente, uma proporção considerável de rebanhos é saneada pela primeira vez, cerca de 18,47 % do total de rebanhos saneados anualmente (Tabela n.º 34). Na sua maioria, são rebanhos de pequena dimensão. Os casos de rebanhos grandes ou são rebanhos que mudam de proprietário ou os proprietários constituem um rebanho comprando animais de várias explorações. Nas folhas de campo não é possível encontrar qualquer indicação que permita referenciar este novo produtor, sendo classificados como rebanhos “suspeitos de brucelose”, após serem submetidos a exame serológico.

<table>
<thead>
<tr>
<th></th>
<th>Total de Rebanhos</th>
<th>Total de B1</th>
<th>%</th>
<th>B1 antigos</th>
<th>% B1 antigos</th>
<th>% TR</th>
<th>B1 novos</th>
<th>% B1 novos</th>
<th>% TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>1584</td>
<td>290</td>
<td>18,31</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>290</td>
<td>18,31</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1403</td>
<td>248</td>
<td>17,68</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>248</td>
<td>100,00</td>
<td>17,68</td>
</tr>
<tr>
<td>1996</td>
<td>1409</td>
<td>403</td>
<td>28,60</td>
<td>268</td>
<td>66,50</td>
<td>19,02</td>
<td>135</td>
<td>33,50</td>
<td>9,58</td>
</tr>
<tr>
<td>1997</td>
<td>1231</td>
<td>299</td>
<td>24,29</td>
<td>53</td>
<td>17,73</td>
<td>4,31</td>
<td>246</td>
<td>82,27</td>
<td>19,98</td>
</tr>
<tr>
<td>1998</td>
<td>1407</td>
<td>478</td>
<td>33,97</td>
<td>192</td>
<td>40,17</td>
<td>13,65</td>
<td>286</td>
<td>59,83</td>
<td>20,33</td>
</tr>
<tr>
<td>1999</td>
<td>1550</td>
<td>590</td>
<td>38,06</td>
<td>203</td>
<td>34,41</td>
<td>13,10</td>
<td>387</td>
<td>65,59</td>
<td>24,97</td>
</tr>
<tr>
<td>Média</td>
<td>1431</td>
<td>385</td>
<td>26,82</td>
<td>179</td>
<td>39,70</td>
<td>12,51</td>
<td>266</td>
<td>68,83</td>
<td>18,52</td>
</tr>
</tbody>
</table>

B1 “antigos” – rebanhos que no ano anterior não foi submetido a controlo serológico.

B1 “novos” – rebanhos nunca controlados em anos anteriores.

Tabela n.º 34 - Rebanhos com classificação sanitária B1 (desconhecido)

Por outro lado, em média, cerca de 13 % dos rebanhos saneados anualmente não o foram no ano anterior. Muitos destes rebanhos estão mais de um ano sem ser submetidos a qualquer intervenção sanitária.

Ambas as situações indicam uma falta de controlo sobre os rebanhos da região, que compromete uma gestão sanitária eficaz.

O reflexo da diminuição dos rebanhos classificados como “indenços” faz-se sentir em todos os concelhos, e em especial nos de Castelo Branco e de Idanha-a-
Nova, apesar dos valores observados de prevalência e de incidência, quer a nível animal quer a nível de rebanho positivos (Figuras n.º 26 e 27).

No entanto, se analisarmos a evolução da classificação sanitária dos rebanhos no início e no fim de cada ano, é visível que há uma evolução positiva das classificações, no sentido do crescimento anual dos rebanhos “indemnes”. Porém, é preciso acrescentar que 60 % dos rebanhos B1, ditos “antigos”, são classificados como “B3”. Aliás, é uma classificação que a maioria desses rebanhos já possuía oficialmente. Desta forma, a subida da proporção de rebanhos “indemnes”, atrás referida, está sobrestimada (Figura n.º 27).

Por sua vez, o decréscimo do número de animais com a classificação sanitária de “indemne” é menos sensível, assim como as subidas que se verificam em relação ao início de cada ano (Figura n.º 26).

Se a nível animal, a percentagem de animais “indemnes” se tem mantido em redor dos 80 %, a nível de rebanhos, apenas 60 % obtiveram essa classificação em 1999. Em termos sociais, estes valores podem ser preocupantes, face ao impedimento que causam na venda de leite cru ou na produção de queijo.

A distribuição dos rebanhos com classificação sanitária “não definida” por freguesia, tem vindo a assumir importância um pouco por todas as freguesias (Figura n.º 28). Naturalmente, este aspecto acaba por influenciar a definição de áreas indemnes (Figura n.º 29). Em 1999, todas as freguesias tinham explorações com situação sanitária não definida, o que nunca tinha acontecido durante o período de estudo. Nesse ano, 6 freguesias (13 %) tinham mais de 50 % dos rebanhos com classificações sanitárias não definidas (Figura n.º 28).

Apesar do pequeno número de explorações B21, com excepção das freguesias da Lardosa (Castelo Branco) e do Rosmaninhal (Idanha-a-Nova), e sobretudo face à prevalência observada a nível animal e à incidência a nível de rebanho, não se caminha para uma classificação de “área indemne de brucelose”, aquele que será, porventura, o objectivo primordial da Campanha de Erradicação da Brucelose.

A evolução do estatuto sanitário passa pelo controlo dos efectivos, sendo necessário, numa primeira fase, sanear todos os rebanhos e aumentar o número de colheitas nos rebanhos com situação sanitária “não definida”. Em média, apenas 10,57 % dos rebanhos “suspeitos de brucelose” e 1,47 % dos rebanhos
Figura n.º 26 - Evolução das classificações sanitárias, por número de animais e por concelho.
Figura n.º 26 (continuação) - Evolução das classificações sanitárias, por número de animais e por concelho.
Figura n.º 27 – Evolução da classificação sanitária dos rebanhos por concelho
Figura n.º 27 (continuação) – Evolução da classificação sanitária dos rebanhos por concelho
Figura n.º 28 – Percentagem anual de explorações com estatuto sanitário não definido, por freguesia
Figura n.º 29 – Evolução das explorações indemnizadas e infectadas, no início e no fim do ano, por freguesia
Figura n.º 29 (continuação) – Evolução das explorações indemnes e infectadas, no início e no final do ano, por freguesia
classificados como “desconhecido”, são submetidos a uma 2ª intervenção anual. Com o suporte legal existente, um aumento do número de colheitas aceleraria a obtenção do estatuto “indemne” para esses rebanhos. A colheita obrigatória a efectuar em todos os rebanhos anualmente, permitiria assegurar o estatuto indemne da região, uma vez que obrigaria a um controlo mais eficaz dos rebanhos com pequenos ruminantes e da informação produzida.
CAPÍTULO 6

ANÁLISE DOS CRITÉRIOS DE APLICAÇÃO DOS TESTES SEROLÓGICOS

Os testes de diagnóstico têm um papel importante na monitorização e na manutenção da saúde das populações animais. São utilizados para detectar a exposição prévia a agentes transmissíveis num rebanho ou com propósitos epidemiológicos diversos, como por exemplo, o cálculo da prevalência da doença, a determinação da presença de infecção numa população, na certificação do estatuto sanitário de rebanhos, em estudos de factores de risco associados à ocorrência de doenças, assim como na avaliação do risco de transmissão de doença entre rebanhos ou entre espécies animais.

A distribuição dos casos de brucelose nos rebanhos da região, com coeficientes de correlação intra-rebanho muito baixos, indica que apesar dos valores de prevalência e incidência serem relativamente baixos nos últimos anos, a brucelose é endémica na região.

Este aspecto levou-nos a analisar os critérios de aplicação dos testes serológicos no âmbito do Programa de Controlo e de Erradicação da Brucelose nos Pequenos Ruminantes. Os baixos níveis de infecção exigem uma maior acuidade na aplicação dos testes e a uma interpretação dos resultados que minimizem os erros de classificação.

O sucesso de um programa de controlo e erradicação depende da metodologia empregue no diagnóstico da doença em causa, sobretudo quando o diagnóstico se baseia em testes serológicas, cujas qualidades intrínsecas não são ideais.

Neste capítulo, analisaremos as questões relacionadas com a dificuldade de interpretação das provas serológicas que complicam, sobretudo, a definição de rebanho indemne.
6.1 Provas serológicas e protocolo de execução

Os testes serológicos utilizados no Programa de Controlo e Erradicação da Brucelose nos Pequenos Ruminantes em Portugal, têm sido o Rosa Bengala (R.B.) e a Fixação do Complemento (F.C.). O protocolo de utilização dos testes tem sido o descrito na Tabela n.º 35.

<table>
<thead>
<tr>
<th>Estado Sanitário do Rebanho</th>
<th>R.B.</th>
<th>F.C.</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebanho Infectado</td>
<td>Positivo</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negativo</td>
<td>Negativo</td>
<td></td>
</tr>
<tr>
<td>Rebanho Infectado*</td>
<td>Positivo</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negativo</td>
<td>Negativo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positivo</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td>Rebanho Suspeito</td>
<td>Positivo</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negativo</td>
<td>Negativo</td>
<td></td>
</tr>
<tr>
<td>Rebanho Indemne</td>
<td>Positivo</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negativo</td>
<td>Negativo</td>
<td></td>
</tr>
</tbody>
</table>

* Rebanhos das freguesias da Lardosa (Castelo Branco) e Rosmaninhal (Idanha-a-Nova)

Tabela n.º 35 - Protocolo de aplicação dos testes serológicos e criticíros de positividade aplicados a nível do animal

As freguesias da Lardosa (Castelo Branco) e Rosmaninhal (Idanha-a-Nova) têm sido consideradas “problemáticas” pelas autoridades oficiais, pela prevalência de brucelose e pelo número de rebanhos infectados. Deste modo, o protocolo de testagem dos rebanhos nestas freguesias é diferente do aplicado na restante região. Considerando o número de reagentes na 1ª colheita de cada ano, apenas em 1995 se obteve uma diminuição significativa do número de reagentes, em relação ao ano anterior ($\chi^2 = 6,03; p = 0,014$).

O R.B. e a F.C., quando aplicados em simultâneo, mostraram uma concordância substancial ($kappa = 0,683$) nos rebanhos infectados. Em rebanhos indemnes,
suspeitos e desconhecidos, a concordância é fraca \((kappa = 0,342)\). Se considerarmos a totalidade dos rebanhos, independentemente da classificação sanitária, a concordância é moderada \((kappa = 0,583)\) (ver Anexo III).

O recurso a uma combinação de testes é utilizado na certificação do estado sanitário dos rebanhos, na vigilância da doença e nos programas de erradicação. A múltipla testagem pode ser feita quer em todos os animais dos rebanhos quer de forma sequencial, dependendo do resultado do teste inicial. Em função dos resultados dos testes, as regras de decisão são aplicadas para classificar o indivíduo como positivo ou negativo.

<table>
<thead>
<tr>
<th></th>
<th>RB</th>
<th>FC</th>
<th>Paralelo</th>
<th>Série</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sen</td>
<td>0,889</td>
<td>0,886</td>
<td>0,987346(^{(1)})</td>
<td>0,787654(^{(2)})</td>
</tr>
<tr>
<td>Esp</td>
<td>0,99</td>
<td>0,99</td>
<td>0,9801(^{(3)})</td>
<td>0,9999(^{(4)})</td>
</tr>
<tr>
<td>(1-sen)</td>
<td>0,111</td>
<td>0,114</td>
<td>0,0127</td>
<td>2E-01</td>
</tr>
<tr>
<td>(1-Esp)</td>
<td>0,01</td>
<td>0,01</td>
<td>0,0199</td>
<td>1E-04</td>
</tr>
</tbody>
</table>

\(^{(1)}\text{Sen} = 1-(1-\text{SenRB})*(1-\text{SenFC})\)
\(^{(2)}\text{Esp} = (\text{EspRB} \times \text{EspFC})\)
\(^{(3)}\text{Sen} = (\text{SenRB} \times \text{SenFC})\)
\(^{(4)}\text{Esp} = 1-(1-\text{EspRB})*(1-\text{EspFC})\) (Smith and Slennning, 2000)

Tabela n.o 36 - Valores intrínsecos das provas serológicas

Confirmamos que não são testes serológicos perfeitos e que apesar da melhoria conseguida na sensibilidade por aplicação dos testes em paralelo e na especificidade por aplicação dos testes em série, continuam a existir erros que comprometem classificação sanitária do animal:

1-Sensibilidade (erro por defeito)
1-Especificidade (erro por excesso)
As reacções “falso-negativas” ocorrem pelas seguintes razões (Eliot, 1993; Graat and Casals, 1995; Gardner et al., 1996):

- Se o animal foi recentemente infectado e o sistema de testagem não permitir detectar concentrações baixas de anticorpos;
- Se o animal for imunotolerante ao agente;
- Se o limiar de detecção ou de positividade do teste for demasiado alto;
- Se o teste não está correctamente adaptado para a detecção dos anticorpos específicos em questão;
- Período perto do parto (grande quantidade de imunoglobulinas no colostro produz uma redução das imunoglobulinas séricas que não são detectadas por testes de baixa sensibilidade);
- Presença de inibidores não específicos (atividade anticomplementar do soro – soro contaminado, hemolizado, fenómenos de prozona);
- Erros laboratoriais.

Os resultados “falso-negativos” são mais frequentes nas fases iniciais da infecção ou nas fases avançadas da doença, especialmente quando se trata de microrganismos com localização intracelular, como a Brucella sp. (Gardner et al., 2000).

As reacções “falso-positivas” são causadas pelos seguintes factores (Graat and Casals, 1995; Gardner et al., 1996):

- Presença de anticorpos específicos e não específicos, após a vacinação;
- Reacções não específicas (por exemplo, inibidores da hemaglutinação);
- Erros laboratoriais;
- Limiar de positividade muito baixo;
- Reacções cruzadas com anticorpos produzidos por microrganismos antigenicamente relacionados (pode fazer variar a especificidade em diferentes regiões geográficas).
6.2 As provas serológicas e o estatuto sanitário de rebanho

O programa de controlo e de erradicação da brucelose nos pequenos ruminantes visa em última análise a certificação sanitária de “indefinido” dos rebanhos e da área geográfica. Os animais são testados em grupos, raramente de forma individual, pois será a resposta do grupo que ditará o futuro dos indivíduos. Por sua vez, a qualificação individual é importante pelo seu impacto na qualificação de rebanho. Neste cenário, a necessidade de intervenção é determinada pelo estatuto sanitário do rebanho e não pelo estatuto de cada animal dentro do rebanho.

Um teste de rebanho pode ser definido como avaliação de uma amostra (ou da totalidade) de animais de um rebanho e a aplicação de regras que classificam um rebanho como positivo ou negativo (com um determinado nível de confiança). Baseia-se nos resultados dos testes individuais e procura reflectir o nível de infecção de cada rebanho.

A definição do estatuto sanitário de um rebanho pode ser baseada na aplicação de um único teste ou através da combinação de vários testes. No entanto, o estatuto a atribuir a uma população deve ser definido com base no estatuto sanitário de todos os animais e não no de uma amostra (Christensen and Gardner, 2000).

As regras de decisão da interpretação dos testes a nível de rebanho são aplicadas primeiro a nível individual, e posteriormente, ao conjunto dos resultados obtidos em todos os animais que constituem o rebanho.

Os resultados obtidos dependem da sensibilidade e da especificidade dos testes quando aplicados ao nível do rebanho que por sua vez são afectados pelos seguintes factores (Martin et al., 1992; Donald et al., 1994; Audigé et Beckett, 1999):

a) A sensibilidade e a especificidade individual do(s) teste(s);
b) A prevalência da infecção na população;
c) O número de animais testados;
d) O número de animais positivos utilizados para classificar a população como positiva;
Estes factores, assim como o intervalo de tempo entre as testagens dos rebanhos e as correlações entre os resultados dos testes, têm um impacto enorme na proporção de resultados positivos e de falso negativos (Greiner and Gardner, 2000). Ambos os tipos de erro são importantes na determinação da eficiência dos sistemas de vigilância estando associados, respectivamente, à aplicação desnecessária de medidas regulamentares e custos devidos à continuidade de transmissão de doença.

A prevalência da brucelose e a sua distribuição influenciam a tomada de decisão sobre o estatuto sanitário de rebanho. Por outro lado, a sensibilidade e a especificidade de rebanho não são valores fixos, e influenciam a interpretação dos resultados a nível de rebanho.

Qualquer que seja a sensibilidade e a especificidade, existem correlações entre os resultados de diferentes animais dentro do mesmo rebanho (correlações de sensibilidade e de especificidade) assim como variações da prevalência entre rebanhos (correlações de doença) que afectam a sensibilidade e a especificidade de rebanho (Tyler and Cullor, 1989; Donald et al., 1994). Isto significa que se um animal tiver um resultado positivo, outro animal do mesmo rebanho poderá ser também positivo, mesmo que ambos estejam livres da doença. Este aspecto assume particular importância, pois mesmo recorrendo a cálculos de probabilidade, torna-se difícil aceitar um determinado número de reagentes num rebanho, sem que este seja classificado como infectado.

As correlações de sensibilidade estão associadas à severidade da doença, a infecções recentes ou a rebanhos com infecções crónicas. As correlações de especificidade podem resultar da vacinação ou da presença de microrganismos que induzem reacções cruzadas com a Brucella melitensis e que podem ter tendência para se agregarem em determinados rebanhos.

A vacina contra a brucelose nos pequenos ruminantes (Rev. I) deixou de ser utilizada no início da década de 90, e muitos dos resultados positivos nas serologias foram justificados oficialmente pela administração da vacina. No final de 1999, os Serviços Oficiais através da O.P.P. da Ovibeira voltaram a utilizar a Rev. I em seis rebanhos “problema”.

180
As correlações de doença, quando elevadas, têm como reflexo uma diminuição na sensibilidade de rebanho sem afectarem a especificidade de rebanho (Donald et al., 1994). No entanto, os valores de correlação intra-rebanho (ρ) observados na região, muito próximos de zero, aumentam a sensibilidade de rebanho. Avaliamos o comportamento das provas serológicas em função do tamanho de rebanho, no período de 1994 a 1999 (Gráfico n.º 17).

Em rebanhos até 10 animais, as colheitas sem reagentes são praticamente de 100 %. À medida que o tamanho de rebanho aumenta verifica-se que a proporção de colheitas sem serologias positivas diminui. As flutuações que se observam no Gráfico n.º 17, derivam das variações entre o número de rebanhos considerados em cada uma das classes de rebanho.

Tem sido descrito, que os grandes rebanhos também são mais afectados por outras doenças, por exemplo, paratuberculose (Ferreira et al., 1999) ou patologias do sistema nervoso central (Louzã et al., 1997).

As razões na base deste fenómeno têm sido relacionadas com factores que influenciam a imunidade do rebanho e desta forma, a persistência e a
disseminação do agente no rebanho; o número de animais susceptíveis; a probabilidade de contacto com rebanhos de diferentes tamanhos; dificuldades na gestão dos efectivos; etc. (Martin et al., 1992; Graat and Casals, 1995; MacDiarmid, 1996; Mikolon et al., 1998; Reviriego et al., 2000).

No entanto, segundo Martin et al. (1992), a não ser que a frequência da doença seja relativamente elevada (≥ 30 %), pode haver uma sobreposição considerável na distribuição do número de reagentes nos rebanhos reagentes e não reagentes, quando os testes serológicos não são perfeitos. À medida que o tamanho de rebanho aumenta, aumenta a sensibilidade de rebanho (SenR) e diminui a especificidade de rebanho (EspR). Com a diminuição desta última, aumenta a probabilidade de um rebanho ser classificado de forma errada como infectado, diminuindo o valor predicto positivo do rebanho.

O recurso à amostragem pode limitar os erros de classificação mas segundo Christensen and Gardner (2000), o estatuto sanitário dos rebanhos é melhor definido quando todos os animais do rebanho são testados. No entanto, o número de colheitas e a múltipla testagem parecem não melhorar a detecção de animais infectados (Gardner et al., 2000).

IC – Intervalo de confiança

Gráfico n.º 18 - Percentagem de rebanhos infectados (B21) em função do tamanho de rebanho (1994 - 1999)
Observamos no Gráfico n.º 18 que, na região, o número de rebanhos classificados como infectados cresce proporcionalmente ao seu tamanho, reflectindo a percentagem de colheitas com serologia negativa em função do tamanho de rebanho.

Como já referimos, os critérios de classificação dos rebanhos não são correctamente aplicados na prática. Há rebanhos que são classificados como infectados com um pequeno número de reagentes, mesmo com menos de 1% de reagentes, e por vezes até, sem que se registre qualquer reagente nas provas serológicas; outros rebanhos, permanecem com a mesma classificação, apesar do número de reagentes obtidos numa colheita, ultrapassar largamente o limiar de positividade pré-definido; outros rebanhos, apesar de não terem registos repetidos de reagentes nas colheitas a que são submetidos, permanecem com o estatuto sanitário de infectado.

A sua distribuição dos rebanhos indemnes é uniforme entre os rebanhos de diferentes dimensões, sendo provavelmente mais afectados pela regularidade com que são submetidos a saneamento e naturalmente pelo número de rebanhos infectados existentes em cada uma das categorias consideradas (Gráfico n.º 19).

Gráfico n.º 19 - Percentagem de rebanhos indemnes (B3) em função do tamanho de rebanho (1994 – 1999)
Podemos determinar a percentagem de rebanhos indemnes sem reagentes e o número de falsos-positivos que poderão apresentar (Gráfico n.º 20), em função do número de animais testados por rebanho e da especificidade do teste utilizando a seguinte fórmula:

Probalidade do rebanho ter um número de reagentes inferior a um limiar de positividade pré-definido = \((C^n_k) \times (\text{Esp})^{N-K} \times (1-\text{Esp})^k\)

\((C^n_k) = \) Combinações de N e K (os programas informáticos que permitem criar bases de dados não realizam factorialis acima de 170 caracteres)
Esp = Especificidade individual do teste
N = Número de animais testados por rebanho
K = Limiar de positividade

<table>
<thead>
<tr>
<th>Número de animais serologicamente positivos</th>
<th>Tamanho de rebanho</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 animais</td>
</tr>
<tr>
<td>0</td>
<td>81.79 *</td>
</tr>
<tr>
<td>1</td>
<td>16.52</td>
</tr>
<tr>
<td>2</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* valores em percentagem

Tabela n.º 37 - Proporção esperada de rebanhos com resultados “falso positivos” com um teste de especificidade individual de 0.99, em função do tamanho de rebanho

184
Verifica-se que se a especificidade não for perfeita, todos os rebanhos indemnes, independentemente do seu tamanho, poderão apresentar resultados falso positivos que podem comprometer a sua classificação. Note-se, que quanto maior for o rebanho, maior o número de resultados falso positivos e menor a probabilidade de não terem reagentes. Por outro lado, os erros na classificação aumentam de forma considerável com a diminuição da prevalência, que no caso da região, apresenta valores relativamente baixos.

Os resultados obtidos são distorcidos quando aparecem resultados não específicos em efectivos infectados por agentes antigenicamente próximos da Brucella melitensis.

A selecção de um limiar de positividade apropriado que defina o número de animais com serologia positiva necessários para que o rebanho seja definido como infectado, depende de vários factores que incluem o objectivo do programa de testagem, o custo dos resultados “falso-positivos” e “falso-negativos”, e a disponibilidade de testes confirmatórios (Gardner et al., 1996). A escolha deste limiar, dependerá em última análise, do risco para os rebanhos indemnes da persistência de rebanhos com infecções residuais.

Para os testes quantitativos, o resultado a nível de rebanho é determinado pelo estabelecimento de dois limiares de positividade: (1) o limiar de positividade seleccionado para o teste a nível individual e (2) o limiar de positividade (número ou proporção de animais do rebanho com resultados positivos ao teste) seleccionado para a interpretar os resultados do teste a nível de rebanho. A interpretação dos resultados a nível de rebanho é mais complexa por ser analisada à luz destes dois limiares de positividade.

Relativamente ao limiar de positividade que estabelece o número de animais com serologia positiva necessários para que o rebanho seja considerado oficialmente como infectado, o critério adoptado na região é 1 % do total de animais saneados. Embora não seja um valor fixo, o limiar é igual para todos os rebanhos, uma vez que é proporcional ao seu tamanho. No entanto, no que diz respeito aos rebanhos de pequena dimensão, um animal reagente pode ser o suficiente para que o limiar de positividade adoptado seja ultrapassado. O que se verifica na prática é que
nestes casos, o critério não é aplicado, mantendo o rebanho a classificação de indemne.
Se considerarmos uma especificidade dos testes de 0,99, o valor de 1% corresponde exactamente a 1 – Especificidade, que define a prevalência mínima de animais positivos ao teste no rebanho que o protocolo de testagem permite identificar. Abaixo deste valor, o protocolo de testagem não deve ser aplicado (Sanaa et al., 1994; MacDiarmid, 1996; Jordan and McEwen, 1998). Quando a prevalência de rebanhos positivos ultrapassar o valor dado por 1 - Especificidade, os rebanhos serão classificados como infectados, mesmo em regiões indemnes.
Verificámos que os erros de classificação permanecem elevados nos rebanhos, independentemente do seu tamanho (Gráfico n.º 20).

Gráfico n.º 20 – Proporção esperada de rebanhos indemnes com mais de 1% de reagentes, utilizando um teste com uma especificidade de 0,99

O número de reagentes que podem surgir em rebanhos indemnes dificulta a decisão de considerar os resultados obtidos como falso-positivos, apesar da prevalência baixa.
Os resultados observados no Gráfico n.º 21, reflectem a diminuição da especificidade do teste aplicado a nível de rebanho que se observa quando o número de animais aumenta. Quanto maior for o rebanho ou o número de animais a testar, maior será a probabilidade de se obterem resultados positivos, provavelmente falsos. A possibilidade de declarar um rebanho infectado, será maior se o limiar de positividade for baixo (Donald et al., 1994).
No entanto, os animais classificados como “falso-positivos” nos testes individuais não excluem a hipótese de que o rebanho esteja realmente infectado (Martin et al., 1992). Este aspecto é ainda mais importante, quando se utiliza mais do que um teste para determinar os resultados serológicos positivos. Observámos que alguns rebanhos têm resultados positivos ao R.B., que posteriormente são negativos à F.C.. Como tal, são considerados “falso-positivos”. Após algumas colheitas, os resultados no R.B. começam a ser confirmados pela F.C. e o rebanho é classificado como infectado.

Na fase final dos programas de erradicação, os “falso-positivos” obtidos em testes individuais podem classificar um rebanho como infectado, pelo que é crítico, o recurso a provas de diagnóstico complementares.

6.3 Definição de rebanho infectado e de rebanho indemne

A interpretação dos resultados é uma tarefa difícil de realizar sem incorrer em erros que agravem os custos do Programa de Controlo e de Erradicação da Brucelose. A atribuição do estatuto sanitário de rebanho deve ser realizada com precaução, sobretudo, quando baseada em testes serológicos individuais, se a prevalência é baixa, mesmo quando os testes serológicos têm uma boa especificidade.

Após os acordos de comércio mundial sobre a aplicação de regras sanitárias para a declaração de País Indemne, têm sido desenvolvidas muitas aproximações metodológicas para melhorar as garantias sobre o estatuto indemne (Canon and Roe, 1982; Martin et al., 1992; Donald, 1993; Donald et al., 1994; Cameron and Balock, 1998, Jordan and McEwen, 1998). No entanto, todos os modelos desenvolvidos assumem determinados pressupostos que limitam a sua aplicação prática. Alguns destes Autores conceberam programas informáticos de domínio público como o Episcope (Frankena et al., 1990), o Tetview (Gardner and Holmes, 1993) ou Freecalc (Cameron and Balock, 1998) ou o Herdcalc (Jordan and McEwen, 1998).

Algumas destas fórmulas podem ser facilmente inseridas em folha de cálculo, permitindo realizar análises de sensibilidade (Tabela n.º 38).
<table>
<thead>
<tr>
<th>Parâmetro – Significado</th>
<th>Fórmula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidade individual (Sen)</td>
<td>em função do(s) teste(s) escolhidos</td>
</tr>
<tr>
<td>Especificidade individual (Esp)</td>
<td>em função do(s) teste(s) escolhidos</td>
</tr>
<tr>
<td>Número de animais a testar (N)</td>
<td>Número de animais no rebanho</td>
</tr>
<tr>
<td>Número de reagentes (R)</td>
<td>Resultados do(s) teste(s)</td>
</tr>
<tr>
<td>Verdadeiros positivos (VP)</td>
<td>SenPv</td>
</tr>
<tr>
<td>Falsos positivos (FP)</td>
<td>(1-Esp)*(1-Pv)</td>
</tr>
<tr>
<td>Verdadeiros negativos (VN)</td>
<td>(1-Pv)*Esp</td>
</tr>
<tr>
<td>Falsos negativos (FN)</td>
<td>(1-Sen)*Pv</td>
</tr>
<tr>
<td>Eficácia. Carácter discriminante global da técnica – Proporção de resultados verdadeiros obtidos em relação ao conjunto de resultados</td>
<td>VP+VN/N</td>
</tr>
<tr>
<td>Prevalência aparente. Probabilidade de um animal testar positivo (T+)</td>
<td>Sen*Pv + (1-Esp) * (1-Pv)</td>
</tr>
<tr>
<td>Prevalência verdadeira (Pv)</td>
<td>1-Pa ou Pv*(1-Sen)+(1-Pv)*Esp</td>
</tr>
<tr>
<td>Proporção de animais infectados com resultado negativo no teste (Erro por defeito)</td>
<td>1-Sen</td>
</tr>
<tr>
<td>Proporção de animais indemnes com serologia positiva (Erro por excesso)</td>
<td>1-Esp</td>
</tr>
<tr>
<td>Especificidade de rebanho (EspR).</td>
<td>(Esp)^N</td>
</tr>
<tr>
<td>Sensibilidade de rebanho (SenR).</td>
<td>1-(1-pa)^N</td>
</tr>
</tbody>
</table>

Tabela n.º 38 - Parâmetros a considerar na interpretação dos resultados serológicos
<table>
<thead>
<tr>
<th>Parâmetro – Significado</th>
<th>Fórmula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor predito positivo individual (VPP)</td>
<td>(\text{Sen}^* \text{Pv}/(\text{Sen}^* \text{Pv})+(1-\text{Esp})^*(1-\text{Pv}))</td>
</tr>
<tr>
<td>Probabilidade de um resultado positivo fornecido pelo laboratório corresponder a um resultado positivo (importante para decidir o saneamento)</td>
<td>(5)</td>
</tr>
<tr>
<td>Valor predito negativo individual (VPN)</td>
<td>(\text{Esp}^(1-\text{Pv})/\text{Esp}^(1-\text{Pv})+(1-\text{Sen})^*\text{Pr}_{(5)})</td>
</tr>
<tr>
<td>Probabilidade de um resultado positivo fornecido pelo laboratório corresponder a um resultado negativo (importante na decisão de qualificar)</td>
<td>(5)</td>
</tr>
<tr>
<td>Valor predito positivo de rebanho (VPN)R</td>
<td>(\text{Sen}^R*\text{Pv}/(\text{Sen}^R*\text{Pv})+(1-\text{Esp}^R)^*(1-\text{Pv}))</td>
</tr>
<tr>
<td>Risco de obter pelo menos uma resposta positiva e considerar o rebanho como infectado (rebanho falso positivo - se o rebanho for indemne)</td>
<td>(5)</td>
</tr>
<tr>
<td>Valor predito negativo de rebanho (VPPR)</td>
<td>(\text{Esp}^R*(1-\text{Pv})/\text{Esp}^R*(1-\text{Pv})+(1-\text{Sen}^R)^*\text{Pr}_{(5)})</td>
</tr>
<tr>
<td>Risco de não identificar a infecção num rebanho infectado (rebanho falso negativo - se o rebanho estiver infectado)</td>
<td>(5)</td>
</tr>
<tr>
<td>Rebanho com estatuto desconhecido. Risco de obter respostas falso negativas e considerar o rebanho como “indenme”.</td>
<td>(2)</td>
</tr>
<tr>
<td>Rebanho com estatuto desconhecido. Risco de obter respostas falso positivas e de considerar o rebanho “infectado”.</td>
<td>(2)</td>
</tr>
</tbody>
</table>

{(1) Graat and Casals (1995); (2) Andre-Fontaine (1990); (3) Rogan and Gladen (1978); (4) Sanaa et al. (1994); (5) Martin et al. (1992); (6) Toma et al. (1996)

Tabela n.º 38 (continuação) - Parâmetros a considerar na interpretação dos resultados serológicos

Na Tabela n.º 39, enunciamos os resultados que se poderão obter num rebanho de 100 animais, com dois reagentes (2%).
<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Protocolo de Testagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R. B.</td>
</tr>
<tr>
<td>Sensibilidade individual (Sen)</td>
<td>0,889</td>
</tr>
<tr>
<td>Especificidade individual (Esp)</td>
<td>0,99</td>
</tr>
<tr>
<td>Número de animais a testar no rebanho (N)</td>
<td>100</td>
</tr>
<tr>
<td>Número de reagentes (R)</td>
<td>2</td>
</tr>
<tr>
<td>Verdadeiros positivos (VP)</td>
<td>3</td>
</tr>
<tr>
<td>Falsos positivos (FP)</td>
<td>1</td>
</tr>
<tr>
<td>Verdadeiros negativos (VN)</td>
<td>96</td>
</tr>
<tr>
<td>Falsos negativos (FN)</td>
<td>0</td>
</tr>
<tr>
<td>Eficácia.</td>
<td>0,99</td>
</tr>
<tr>
<td>Prevalência aparente (T+)</td>
<td>0,02</td>
</tr>
<tr>
<td>T -</td>
<td>0,98</td>
</tr>
<tr>
<td>Prevalência verdadeira (Pv)</td>
<td>0,033370412</td>
</tr>
<tr>
<td>Erro por defeito</td>
<td>0,111</td>
</tr>
<tr>
<td>Erro por excesso</td>
<td>0,01</td>
</tr>
<tr>
<td>Especificidade de rebanho (EspR)</td>
<td>0,366032</td>
</tr>
<tr>
<td>Sensibilidade de rebanho (SenR)</td>
<td>0,867380444</td>
</tr>
<tr>
<td>Valor predito positivo individual (VPP)</td>
<td>0,749650067</td>
</tr>
<tr>
<td>Valor predito negativo individual (VPN)</td>
<td>0,996144227</td>
</tr>
<tr>
<td>Valor predito positivo individual (VPPR)</td>
<td>0,045102514</td>
</tr>
<tr>
<td>Valor predito negativo individual (VPNRR)</td>
<td>0,987646469</td>
</tr>
<tr>
<td>Rebanho falso positivo</td>
<td>0,633968</td>
</tr>
<tr>
<td>Rebanho falso negativo</td>
<td>3,40642E-96</td>
</tr>
<tr>
<td>Rebanho com estatuto desconhecido. Risco de obter respostas falso negativas e de considerar o rebanho “indenme”.</td>
<td>0,012353531</td>
</tr>
<tr>
<td>Rebanho com estatuto desconhecido. Risco de obter respostas falso positivas e de considerar o rebanho “infectado”.</td>
<td>0,954897486</td>
</tr>
</tbody>
</table>

Tabela n.º 39 - Aplicação prática do Rosa Bengala e Fixação do Complemento a um rebanho com 100 animais
Os resultados obtidos devem reflectir o objectivo para a qual se estabeleceu o sistema de testagem, que no caso da região, face à prevalência que se registra, é a qualificação dos rebanhos como indemnes. Por outro lado, os resultados devem ser interpretados em função do contexto epidemiológico da região onde se encontra a exploração, e não, unicamente com base no resultado dos testes serológicos.

A interpretação dos resultados serológicos não pode ser feita correctamente sem conhecimento dos valores de sensibilidade e de especificidade de rebanho. No entanto, estes parâmetros não são suficientes para prever o valor dos resultados (Sanaa et al., 1994). Nestas circunstâncias, a distribuição das probabilidades do número de reagentes pode ser informativa. Porém, quando a diferença entre a probabilidade de um animal ser positivo num rebanho contendo pelo menos 1 animal doente e a probabilidade de um animal ser positivo num rebanho sem animais doentes é muito pequena, há uma sobreposição considerável na distribuição das probabilidades, e uma incerteza sobre o verdadeiro estado de saúde dos animais do rebanho.

A prevalência aparente e o número de reagentes individuais devem ser considerados na determinação do estatuto sanitário de uma população. Normalmente, face a uma proporção elevada de resultados positivos, a tomada de decisão em relação à atribuição do estatuto sanitário é clara. Nas situações de prevalência baixa, como na área em estudo, é necessário identificar os rebanhos indemnes.

Dois parâmetros devem governar o protocolo utilizado (Eliot, 1993): O Valor Predito Negativo (VPN) e a Especificidade do(s) teste(s). Há que garantir uma sensibilidade do protocolo de testagem elevada e que os riscos de contaminação estão controlados. Igualmente, é preciso ter presente que quanto menor for a prevalência, maior será a probabilidade de cometer erros na classificação sanitária, se os valores intrínsecos das provas serológicas não forem elevados (Andre-Fontaine, 1990).
A especificidade de rebanho permite saber qual a proporção de unidades indemnes que poderão ser qualificados de forma incorrecta, e calcular os custos adicionais associados a perdas de qualificação injustificadas nos rebanhos indemnes pelo que a análise das consequências deve considerar os inconvenientes de uma ausência injustificada de qualificação indemne.

A fiabilidade da qualificação depende do VPN que é função da sensibilidade e da prevalência, sendo inversamente proporcional à especificidade. O resultado negativo é tanto mais fiável quanto maior a sensibilidade e menor a prevalência. A escolha do VPN é habitualmente feita, de forma a ajustar os custos adicionais que em função dos benefícios das garantias da qualificação. Numa região com prevalência elevada, como nas freguesias da Lardosa e do Rosmaninhal, é recomendável recorrer a uma sensibilidade elevada.

A combinação de testes serológicos que faça variar a sensibilidade, a especificidade e a determinação do limiar de positividade, é uma estratégia que permite adaptar os resultados laboratoriais ao contexto epidemiológico da brucelose na região, em função da evolução da prevalência observada.

O recurso a métodos de diagnóstico complementares deve ser sistemático em todos os casos em que o resultado seja positivo e/ou a interpretação seja problemática, isto é, na ausência de factores de risco capazes de explicar os casos observados. Caso contrário, estes resultados são logicamente considerados como específicos (Bénet, 1998).

A interpretação do resultado final deve fundamentar-se no número de animais testados e nos factores de risco associados à introdução da doença nos rebanhos. O estatuto indemne deve ser determinado pela combinação de ausência de serologias negativas, ausência de quadros clínicos de doença, relatórios de necrópsias, exames laboratoriais complementares e nível de biosegurança da exploração. Caso o rebanho seja (ou não) considerado infectado, todos os animais nesse rebanho assumem esse estatuto.
6.4 Controlo de introdução de animais infectados em rebanho indemne

Os testes serológicos têm um papel importante na redução do risco de introdução de novos agentes patogénicos e são frequentemente utilizados como uma peça fulcral da avaliação do estatuto sanitário das populações animais. Com os acordos do G.A.T.T. e a sua aplicação pela O.M.C., têm vindo a ser desenvolvidas metodologias (Toma et al., 1996; MacDiarmid, 1996), que permitem adoptar um método padronizado de análise de risco associado à importação de animais e de produtos de origem animal.

Para eliminar totalmente o risco de introdução de doenças como a brucelose, os animais de substituição devem ser adquiridos explorações ou a Países oficialmente livres de brucelose. Deve enfatizar-se que a introdução de agentes infecciosos, é um critério necessário mas não suficiente para a transmissão de agentes infecciosos num rebanho (Gardner et al., 1996). A probabilidade de infecção será menor ou igual à probabilidade de introdução da doença e depende de factores ambientais e de maneio.

Para minimizar o risco de transmissão da brucelose é preferível solicitar e analisar o perfil serológico histórico da exploração de origem, utilizar dados que incluam a história e o perfil serológico da exploração de origem, e não tomar a decisão de compra, apenas com base nos resultados serológicos dos animais a adquirir. Os fluxos de animais devem ser restritos a rebanhos com o mesmo estatuto sanitário. É comum entre os compradores, a tendência para recorrer a testes de grande sensibilidade para minimizar o risco de introdução de agentes infecciosos, e entre os vendedores, a testes de grande especificidade para maximizar as possibilidades de venda dos animais.

Para doenças certificáveis como a brucelose, a informação sobre o estatuto sanitário do rebanho de origem e os resultados dos testes individuais dos animais, determinam a sua elegibilidade para compra. Os animais não devem ser considerados para compra se não provirem de rebanhos que testem negativos à brucelose de forma consistente no tempo. Se a doença estiver presente no rebanho de origem e não for detectada, a probabilidade da sua introdução no rebanho de
destino será igual a 1. Assim, a questão crítica é determinar a probabilidade de erro de classificação do rebanho de origem em relação ao seu verdadeiro estatuto sanitário.

Um teste de alta especificidade é importante para assegurar que animais de alto valor genético não sejam excluídos dos rebanhos por resultados falso-positivos. No entanto, o valor da especificidade pode não ser relevante, atendendo a que qualquer resultado positivo nos testes serológicos deve ser motivo de impedimento para que a compra se realize (Thorburn et al. 1991), sobretudo quando a qualificação dos rebanhos pode estar em causa.

Segundo Adler and Wiggins (1973), a probabilidade de um rebanho ou de um conjunto de animais testar negativo, conhecendo-se a sensibilidade (Sen), a especificidade (Esp) individual dos testes, a prevalência (Pr) e o número de animais a testar podem ser calculadas pelas seguintes fórmulas, em função dos valores acessíveis:

\[
\text{Prob} (R = 0) = \left[\text{Pr} (1 - \text{Sen}) + (1 - \text{P}) \times \text{Esp} \right]^n
\]

ou,

\[= 1 - (1 - \text{Prevalência})^n\]

A introdução de animais nas explorações é um factor de risco importante na transmissão da brucelose na região, pelo que importa tomar medidas que impeçam a introdução de animais provenientes de rebanhos infectados ou com estatuto sanitário desconhecido. A construção de uma base de dados que permita uma gestão sanitária dos rebanhos e uma melhoria da credibilidade das classificações sanitárias, contribuirá para reduzir esse risco.

A identificação dos animais deverá permitir a identificação do rebanho de origem de forma a permitir a sua rápida identificação em caso de foco de brucelose.
CAPÍTULO 7

IDENTIFICAÇÃO E QUANTIFICAÇÃO DE FACTORES DE RISCO

Um dos objectivos da epidemiologia veterinária, é a identificação e a quantificação de factores de risco, associados à ocorrência e/ou à persistência de doenças e/ou de problemas de produção nas populações animais (Martin et al., 1987). Este objectivo é essencial quando se implementa um programa de erradicação, cujos meios de diagnóstico se baseiam em testes imperfeitos.

Torna-se portanto, imperiosa, a implementação de medidas nas explorações, que complementem as margens de erro dos testes, e impeçam, por um lado, a introdução da Brucella melitensis em explorações indemnes, e por outro lado, reduzam ou eliminem a disseminação do agente entre os animais dum rebanho.

Seleccionar, entre um conjunto alargado de factores, aqueles que irão ser alvo preferencial do investimento em recursos humanos e materiais, é uma tarefa complexa, sobretudo a nível de rebanho. Em muitos estudos epidemiológicos, são recolhidos dados sobre numerosas variáveis independentes, para identificar os factores mais importantes na ocorrência da doença em questão (Dohoo, I.R. et al., 1996). Posteriormente, é possível seleccionar as medidas de controlo, de prevenção e de vigilância que optimizem os recursos financeiros e humanos disponíveis, de forma a extinguir os focos de doença e a garantir o estatuto sanitário “indenme” das explorações.
7.1 Material e métodos

7.1.1 Questionário e amostragem

Os questionários são “ferramentas” integradas, com muita frequência, nos estudos de Epidemiologia Descritiva e Analítica, para recolha estruturada de dados.
Nesta investigação, desenvolvemos um questionário para armazenar dados relativos à caracterização das explorações, ao sistema de produção e à presença/ausência de factores/comportamentos de risco associados à ocorrência de brucelose nos pequenos ruminantes.
Uma versão-piloto do questionário, foi testada numa amostra aleatória de 15 Produtores, tendo sido posteriormente introduzidas, algumas alterações por forma a adaptar a linguagem utilizada e a melhorar a lógica e a sequência das perguntas.
Finalmente, o inquérito (ver Anexo IV) foi realizado por entrevista directa aos Produtores da área de intervenção da OPP-Ovibeira, dos concelhos de Castelo Branco e de Idanha-a-Nova. Os Produtores do concelho de Vila Velha de Ródão foram excluídos, por este concelho, só esporadicamente se registar a presença de rebanhos infectados.
Foram também excluídos, os rebanhos com menos de 10 animais, por só esporadicamente, se detectarem nesses rebanhos, animais reagentes, e por existirem muitos problemas na sua identificação e localização.
Foram ainda excluídos, os rebanhos com a classificação de B2.2 (em saneamento, suspeitos de brucelose), dada a indefinição que esta classificação confere sobre o verdadeiro estatuto sanitário do rebanho. Assim, a amostragem incidiu sobre rebanhos com ≥ 10 animais, dos concelhos de Castelo Branco e de Idanha-a-Nova, com classificação sanitária de “infectado” ou de “indefinido”.
O tamanho da amostra foi calculado em 150 explorações, numa proporção de 1 caso para 2 controlos, na aplicação informática STATCALC da versão 6.04 do
programa EPI-Info, para um estudo observacional, tipo caso-controlo, não emparelhado, α=95% e β=80% (ver Anexo IV).

7.1.2 Armazenamento, processamento e análise dos dados

Foi construída uma base de dados, no programa EPI-Info (versão 6.04), para armazenar e processar os dados recolhidos nas entrevistas aos Produtores. Posteriormente, identificámos a existência de associação estatística entre determinadas variáveis e a ocorrência de brucelose, e quantificámos a força dessa associação, de forma a seriam os factores de risco de ocorrência de brucelose nos rebanhos de pequenos ruminantes na área de intervenção da OPP - Ovibeira. Embora alguns Autores, refiram que as variáveis com níveis de significância de 0.1 a 0.2 possam ser incluídas nas análises subsequentes (Martin et al., 1987; Dohoo et al., 1996) optámos pelo nível de significância de 0,05. Os dados foram, então, exportados para o programa Excell (versão 7) e transformados em dados binários, sendo posteriormente exportados para o programa STATISTIX (Versão 2.0) onde foi calculada a correlação de Pearson. Esta correlação, foi desenvolvida para comparar a associação entre variáveis em estudo e o efeito que a sua relação pode ter nos resultados de comparações entre os factores individuais e a presença de infecção. Deste modo, foi possível determinar os pares de variáveis altamente ou moderadamente correlacionadas (> 0.5), cujos efeitos individuais se tornaria difícil de separar, originando problemas de multicolinearidade (Dohoo, et al., 1996), e selecionar as variáveis a incluir no modelo estatístico final. A correlação incidiu sobre as variáveis independentes com um Odds Ratio > 1 (p < 0,05) e cujo intervalo de confiança não englobasse a unidade.
Para determinar a presença de factores de confusão, comparámos dois modelos: um modelo com a eventual variável de confusão como variável independente e um modelo multivariável. Posteriormente, verificámos as alterações relativas e absolutas dos valores calculados para o eventual factor de confusão, do erro padrão e da estatística de Wald (Frankena and Thrusfield, 1995). Como, por vezes, esta estatística não rejeita a hipótese nula, mesmo quando o coeficiente é significante, recorremos ao teste G \(^1\) (Hosmer and Lemeshow, 2000).

Para definir um factor de confusão, estabeleceu-se como critério que a alteração relativa devia ser igual a pelo menos 25% quando o coeficiente β for superior a 0.40 ou inferior a -0.40, e pelo menos 0.1 absoluta, se estiver entre 0.40 e -0.40 (Frankena and Thrusfield, 1995).

Após as análises estatísticas referidas, seleccionámos as variáveis a incorporar no modelo final. Foi realizada uma regressão logística multivariável no programa SPSS (Versão 10.0), utilizando o método de eliminação “backward stepwise”, para confirmação ou exclusão dos factores de risco do modelo final. Sendo a prevalência da brucelose nos pequenos ruminantes da região em estudo inferior a 5%, não foi determinado o Risco Relativo a partir do Odds Ratio pois os valores de Odds Ratio são considerados uma boa aproximação ao Risco Relativo, nestes níveis de prevalência (Martin et al., 1987; Beaudeau and Fourichon, 1998).

Para descrever a efectividade (“goodness-of-fit”) do modelo utilizámos o método de Hosmer and Lemeshow (SPSS 10.0).

Para determinar a probabilidade de ocorrência de brucelose nos rebanhos de pequenos ruminantes, recorremos a um modelo “log linear”, no qual o risco de desenvolvimento de doença é definido em função das variáveis explanatórias resultantes da regressão logística (Frankena and Thrusfield, 1995):

$$P = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

\(^1\) $G = -2\ln \left[\text{likelihood model without} / \text{likelihood model with} \right]$ (calcula as alterações da estatística D – Desvio – determinada pelo teste de verosimilhança, quando é incluída a variável independente no modelo: $D = -2\ln \text{verosimilhança do modelo corrente/ verosimilhança do modelo saturado}$). Segue a distribuição do χ^2 com um grau de liberdade quando o coeficiente β_1 (coeficiente da variável independente) é igual a 0.

198
onde, β_0 e β_1 são os coeficientes das variáveis dependente e explanatória, respectivamente, e x corresponde a 1, se a variável estiver presente e a 0, se estiver ausente.

7.2 Resultados obtidos no estudo de caso-controlo

7.2.1 Características gerais das explorações pecuárias amostradas

Foram investigadas 150 explorações: 50 com a classificação sanitária B21 (infectados) e 100 com a classificação sanitária B3 (indemnes).

Cerca de 90% dos Produtores eram sócios da OPP – Ovibeira, 88% entre os indemnes e 94% dos infectados; 12% das explorações com classificação indemne e 4% das explorações infectadas eram sociedades, sendo as restantes, pertencentes a um único Produtor. Destes, 91 são Produtores há mais de 10 anos, dos quais, 35 há mais de 20 anos, enquanto 24 exercem a actividade há menos de 5 anos (Tabela n.º 40).

<table>
<thead>
<tr>
<th>Anos em actividade</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 5 anos</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>5 a 10 anos</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>11 a 15 anos</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>16 a 20 anos</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>> 20 anos</td>
<td>19</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Tabela n.º 40 - Anos de actividade como Produtor

A distribuição dos rebanhos investigados, por concelho e por freguesia, foi influenciada pela localização geográfica das explorações infectadas.
Oitenta e cinco explorações localizam-se em Castelo Branco e 67 em Idanha-a-Nova, das quais, duas se prolongam pelos dois concelhos. Vinte e cinco explorações estão divididas por, pelo menos, duas freguesias. Assim, dezanove explorações dividem a sua propriedade por duas freguesias; uma exploração por três freguesias; três explorações têm parcelas no concelho do Fundão; e numa exploração, os animais partilham pastos na freguesia de Segura (Idanha-a-Nova) e em Espanha (Região Autonómica da Extremadura).

O objectivo principal das explorações, é a produção de leite para 38 % dos Produtores com rebanhos indemnes e 56 %, entre os que têm rebanhos infectados (Tabela n.º 41). O leite é vendido a outros Produtores, a Cooperativas ou a Industriais. O queijo é feito em 33 % das explorações indemnes e em 42 % das infectadas. Entre as explorações que fazem queijo, a sua cura é feita em 36 % das explorações indemnes e em 43 % das infectadas. Nas restantes explorações, os produtores vendem o queijo aos 8 dias de cura. Neste caso, a venda é feita aos denominados “Afinadores”, que recolhem os queijos em diversas explorações para os curarem em salas de cura próprias.

<table>
<thead>
<tr>
<th>Anos em actividade</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produção de leite</td>
<td>38</td>
<td>56</td>
</tr>
<tr>
<td>Produção de queijo</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td>Cura o queijo</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Vende queijo aos 8 dias</td>
<td>71</td>
<td>76</td>
</tr>
<tr>
<td>Produção de carne</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>Produção de requeijão</td>
<td>42</td>
<td>18</td>
</tr>
</tbody>
</table>

Tabela n.º 41 – Principais actividades desenvolvidas pelos Produtores

A produção de requeijão é feita em 42 % das explorações indemnes que produzem queijo, e por uma exploração que apenas produz queijo para auto-consumo. Entre as explorações infectadas, apenas 18 % das explorações que produzem queijo, produzem igualmente o requeijão.
Para além da produção de requeijão, o soro do leite é utilizado na alimentação de outros animais presentes nas explorações, nomeadamente dos cães e dos suínos. Em relação a estes últimos, a percentagem de produtores com explorações indemnes que fornece o soro (36 %) é inferior ao que acontece entre os produtores de explorações infectadas (85 %).

Em 32 % das explorações indemnes, os suínos são criados para autoconsumo, percentagem inferior à observada entre as explorações infectadas (48 %). As vacas são exploradas em 16 % de explorações indemnes e em 24 % das infectadas.

As explorações investigadas têm áreas que variam entre 1 e 2000 hectares, cobrindo uma área total de 38744 hectares, 19438 ha entre os indemnes e 19306 ha, entre os infectados (Tabela n.º 42). De referir, que até 10 hectares, nenhuma exploração estava classificada como infectada.

<table>
<thead>
<tr>
<th>Área da exploração</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>até 30 ha</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>30 a 120 ha</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>120 a 350 ha</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>> 350 ha</td>
<td>14</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabela n.º 42 - Área das explorações pecuárias de pequenos ruminantes

As explorações indemnes (87 %) e infectadas (76 %) localizam-se majoritariamente numa única freguesia. No entanto, 58 % das explorações indemnes e 56 % das infectadas estão divididas por várias parcelas descontínuas. Os Produtores têm, por isso, necessidade de deslocar os seus rebanhos: 60 % dos rebanhos indemnes utilizam caminhos comuns a outros rebanhos; 62% no caso dos rebanhos infectados. Alguns destes caminhos são públicos, outros privados, passando no meio de outras propriedades.

As distância entre as parcelas das explorações variam entre os 200 m e os 40 km (Média (m) = 4237.9 ± 6236.2) (Tabela n.º 43).
<table>
<thead>
<tr>
<th>Distância máxima entre parcelas (m)</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>1500</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2000</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>2500</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>3500</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>5000</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>5500</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6000</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>8000</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>10000</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>14000</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>40000</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabela n.º 43 - Distância máxima entre as parcelas das explorações

A partilha de pastos com outros rebanhos é feita por 25 % dos rebanhos indemnes e por 30 % das explorações infectadas. Esta partilha, ocorre sobretudo, entre rebanhos de um Produtor e do seu Pastor ou da presença de um grupo de animais, pertencente a um Produtor que os deixa a cargo de outro Produtor. Nalgumas situações, um Produtor faz um contrato com outro, que inclui o uso de pastagens e até a participação no rendimento da venda do leite ou do queijo, em troca do pastoreio dos seus animais ou mesmo da gestão da sua exploração.
Na freguesia da Zebreira, concelho de Idanha-a-Nova, existe uma propriedade com uma área de 2800 ha partilhada por cerca de 100 agricultores. A distribuição dos terrenos é feita anualmente por sorteio. Posteriormente, alguns dos
beneficiários cedem os seus direitos a outros agricultores ou fazem trocas. Alguns produtores partilham os mesmos locais de pasto e o mesmo pastor. Como todos os anos as parcelas são sorteadas, o local de pastoreio dos animais muda de ano para ano. Por outro lado, não existe qualquer barreira física que separe os diferentes rebanhos, além das aramadas e muros que dividem as propriedades vizinhas. São conhecidos outros casos de propriedades onde ocorre o sorteio de parcelas pelos produtores de uma freguesia, mas onde o número de animais e de rebanhos envolvidos é pequeno, como no Monte do Pombal na aldeia dos Lentiscais (Castelo Branco).

30 % dos Produtores com rebanhos infectados, referiram partilhar pastos com outros rebanhos, não especificando a quem pertenciam esses rebanhos. As comparticipações financeiras obtidas com a adesão de Portugal à CEE e a dificuldade em encontrar mão-de-obra, nomeadamente de pastores, aumentou as áreas aramadas das explorações, embora 71 % dos Produtores com rebanhos indemnes e 76 % com explorações infectadas, afirmaram não ter as suas explorações completamente aramadas ou muradas. Um número ligeiramente maior de explorações (Indemnes - 74 %; Infectados - 80 %) tem locais por onde os animais de outros rebanhos podem entrar na exploração, sobretudo devido à existência de linhas de água que dividem as explorações, sendo impossíveis de vedar.

Assim, 10 % dos Produtores com explorações indemnes afirma ter problemas com a entrada de animais de explorações vizinhas, o que acontece em 80 % das explorações infectadas. O número de Produtores que admite que os seus animais invadem as explorações vizinhas é menor nas explorações infectadas (Indemnes - 17 %; Infectados - 66 %).

Um terço dos Produtores adquiriu pastos no último ano de actividade (Indemnes - 32 %; Infectados - 36 %). Destes, alguns afirmaram ter comprado pastos que eram pastoreados por outro rebanho (Indemnes - 38 %; Infectados - 28 %) tendo, em alguns casos, comprado esse rebanho (Indemnes - 8 %; Infectados - 80 %). Apenas uma pequena proporção dos Produtores tenciona comprar pastos (Indemnes - 28 %; Infectados - 20 %). Entre estes Produtores, a compra dos
rebanhos que aí pastam, é uma possibilidade real para a maioria (Indemnes - 61 %; Infectados - 70 %).

O regadio está limitado a um pequeno grupo de Produtores (Indemnes - 33 %; Infectados - 42 %), sobretudo do concelho de Idanha-a-Nova. O sequeiro predomina nas explorações da região (Indemnes - 97 %; Infectados - 98 %).

Os locais de abeberamento são partilhados no caso de 35 % dos rebanhos indemnes e de 22 % dos infectados. A partilha de água faz-se sobretudo em ribeiros e barragens que atravessam e dividem algumas das explorações.

Uma reduzida proporção de Produtores não tem ovil ou cabril (Indemnes - 12 %; Infectados - 2 %). Estes, deixam os animais nos bardos à noite e mantêm-nos nas pastagem durante o dia. Nestas explorações, a ordenha é feita no barro.

Os bardos são característicos da região, existindo em 81 % das explorações indemnes e em 96 % das infectadas. São construídos nas pastagens ou no interior das instalações pecuárias, recorrente a cancelas de madeira ou de metal.

O pavimento dos ovis/cabris é, principalmente, de terra (Indemnes - 26 %; Infectadas - 48 %) e palha (Indemnes - 78 %; Infectados - 88 %). Apenas duas explorações recorrem a aparas de madeira, ambas indemnes de brucelose. Nas pequenas explorações, os Produtores recorrem a camas de “mato”, feitas de ramas de arbustos (Indemnes - 9 %; Infectados - 2 %). O cimento é utilizado, sobretudo, nas áreas de acesso à sala de ordenha. No entanto, em 5 explorações indemnes e numa infectada, o piso do ovil era cimentado, utilizando-se a palha como cama.

7.2.2 Estrutura dos rebanhos

Nas 150 explorações investigadas, predominam os rebanhos com ovinos (N=143), enquanto os caprinos se limitam a 55 rebanhos. Os rebanhos com ambas as espécies animais são 48 e os rebanhos só de caprinos, apenas 7. As média de animais por rebanho são superiores entre os rebanhos infectados (Tabela n.º 44).
<table>
<thead>
<tr>
<th>Tipo de rebanho</th>
<th>N.º de rebanhos</th>
<th>N.º de fêmeas</th>
<th>N.º de fêmeas (rebanhos indemnes)</th>
<th>Média</th>
<th>N.º de fêmeas (rebanhos infectados)</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovinos (global)</td>
<td>143</td>
<td>37839</td>
<td>21008</td>
<td>223</td>
<td>16831</td>
<td>343</td>
</tr>
<tr>
<td>Caprinos (global)</td>
<td>55</td>
<td>1939</td>
<td>1273</td>
<td>32</td>
<td>666</td>
<td>44</td>
</tr>
<tr>
<td>Mistos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovinos</td>
<td>48</td>
<td>10770</td>
<td>6172</td>
<td>181</td>
<td>4598</td>
<td>328</td>
</tr>
<tr>
<td>Caprinos</td>
<td>1505</td>
<td>899</td>
<td>26</td>
<td>606</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Ovinos</td>
<td>95</td>
<td>27609</td>
<td>14836</td>
<td>247</td>
<td>12233</td>
<td>350</td>
</tr>
<tr>
<td>Caprinos</td>
<td>7</td>
<td>434</td>
<td>374</td>
<td>62</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Tabela n.º 44 - Estrutura dos rebanhos de pequenos ruminantes

O número de ovelhas por rebanho (Tabela n.º 45) varia entre 10 e 1300 animais, predominando os rebanhos < 100 ovelhas entre os rebanhos indemnes e de mais 100 animais, nos rebanhos infectados. 25 % dos Produtores da amostra tem ≤ 57 ovelhas por rebanho.

<table>
<thead>
<tr>
<th>Número de ovelhas por rebanho</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>21 a 50</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>51 a 100</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>101 a 200</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>201 a 300</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>301 a 400</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>401 a 500</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>501 a 600</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>> 600</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabela n.º 45 - Número de ovelhas adultas por rebanho

Cada rebanho indemne têm 7 ± 8,17 carneiros, enquanto que nos rebanhos infectados têm 13 ± 21,99 (Tabela n.º 46).

No caso dos carneiros, o valor apresentado está sobrestimado para os rebanhos infectados, porque uma das explorações apresentava 143 carneiros na altura da
visita. Sendo a venda de reprodutores um dos principais objectivos da exploração, os carneiros vão sendo utilizados na cobrição das ovelhas enquanto não se procede à sua venda. Como o proprietário não foi capaz de precisar o número de carneiros utilizados na cobrição, devido à frequência das rotações feita entre os reprodutores, registámos 143 carneiros no questionário.

<table>
<thead>
<tr>
<th>Número de carneiros por rebanho</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 2</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>3 a 6</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>7 a 12</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>Mais de 12</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabela n.º 46 - Número de carneiros por rebanho

O número de cabras por rebanho (Tabela n.º 47) é menor do que o observado para os rebanhos com ovinos, o que reflete a dificuldade de manejá-los estes animais, que não respeitam barreiras físicas como as aramadas. Com a falta de Pastores, e perante a recusa de muitos, em lidar com caprinos, o número de rebanhos de cabras e o número de caprinos por rebanho, tem diminuído de ano para ano. O concelho de Vila Velha de Rodão é uma exceção, assim como algumas freguesias limítrofes de Castelo Branco, onde a floresta tem um papel importante no rendimento das explorações e as cabras são mantidas em regime de silvopastorícia, contribuindo para "limpar" as matas, ajudando a prevenir incêndios.

<table>
<thead>
<tr>
<th>Número de cabras por rebanho</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 6</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>7 a 20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>21 a 40</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Mais de 40</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabela n.º 47 - Número de cabras por rebanho

206
18 % dos rebanhos indemnes e 20 % dos infectados não têm bodes (Tabela n.º 48). A presença do bode é para muitos Produtores desnecessária, pois “o animal come e não produz”. O recurso a bodes emprestados é a solução praticada mas não admitida por muitos dos Produtores. A presença de chibos não pressupõe a sua utilização futura como reprodutores, pois destinam-se ao auto-consumo.

<table>
<thead>
<tr>
<th>Número de bodes por rebanho</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem bodes</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>Mais de 2</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabela n.º 48 - Número de bodes por rebanho

Nos rebanhos com ambas as espécies, em dez (20,8 %) não detectámos a presença de bodes ou de chibos, o que não aconteceu relativamente aos carneiros. Pelos dados registados nas folhas de campo, em 1997 e 1998, 42% dos rebanhos com caprinos não tinham ou não foi registada a presença de bodes; valor bastante superior ao registado para rebanhos de ovinos sem carneiros: 5 e 6 %, respectivamente.

7.2.3 Maneio reprodutivo

As épocas de parto têm vindo a ser gradualmente alteradas nos últimos anos, como resultado da introdução de raças exóticas - sobretudo de ovinos - e do melhoramento genético das raças autóctones, com recurso a técnicas de controlo de cios e à inseminação artificial.

Os Produtores tentam reduzir os efectivos, mantendo ou aumentando a quantidade de leite produzido e alargando a época da sua produção. Assim, constatámos períodos de parição mais prolongados, embora as principais épocas
se mantenham entre Setembro e Março, devido à maior procura de borregos e chibos, nos períodos festivos do Natal e da Páscoa. Apenas, um Produtor, refere partos em Julho (Tabela n.º 49).

<table>
<thead>
<tr>
<th>Maneio reprodutivo (épocas de parição)</th>
<th>Indemnes (%)</th>
<th>Infectados (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeiro</td>
<td>47</td>
<td>60</td>
<td>77</td>
</tr>
<tr>
<td>Fevereiro</td>
<td>45</td>
<td>56</td>
<td>73</td>
</tr>
<tr>
<td>Março</td>
<td>36</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>Abril</td>
<td>25</td>
<td>32</td>
<td>41</td>
</tr>
<tr>
<td>Maio</td>
<td>14</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Junho</td>
<td>16</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Julho</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Agosto</td>
<td>24</td>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>Setembro</td>
<td>67</td>
<td>66</td>
<td>33</td>
</tr>
<tr>
<td>Outubro</td>
<td>77</td>
<td>92</td>
<td>46</td>
</tr>
<tr>
<td>Novembro</td>
<td>64</td>
<td>78</td>
<td>39</td>
</tr>
<tr>
<td>Dezembro</td>
<td>53</td>
<td>70</td>
<td>88</td>
</tr>
</tbody>
</table>

Tabela n.º 49 - Distribuição mensal dos partos

Os partos ocorrem nas pastagens (Indemnes - 81%; Infectados - 96%), no ovil (Indemnes - 68%; Infectados - 78%), nos bardos (Indemnes - 58%; Infectados - 80%) ou em qualquer um desses lugares (Indemnes - 50%; Infectados - 66%). Após o parto, a separação das fêmeas é feita em 50% das explorações indemnes e em 70% das infectadas juntamente com as crias, em bardos ou aramadas, na pastagem ou no ovil/cabril. No entanto, em 40% das explorações indemnes e 44% das infectadas, as fêmeas paridas vão para a pastagem com as outras fêmeas do rebanho. A separação, quando praticada, dura em média 2 meses. As crias permanecem com as mães, geralmente, 1-3 meses.

Registaram-se abortos em 23% das explorações indemnes e em 54% das infectadas. Na maioria destas explorações (Indemnes - 93%; Infectados - 94%), as fêmeas que abortaram foram novamente postas à cobrição.
Foi ainda registado nas explorações inquiridas, a ocorrência de nado-mortos (Indemnes - 24 %; Infectados - 50 %) e mortes na 1ª semana de vida (Indemnes - 29 %; Infectados - 32 %).

As secundinas ficam no local do parto (Indemnes - 53 %; Infectados - 46 %). Em alguns casos, os Produtores afirmam que as enterram ou queimam-nas (Indemnes - 20 %; Infectados - 28 %), se estiverem presentes aquando da sua expulsão ou deixam-nas para os cães comerem (Indemnes - 43 %; Infectados - 76 %), ficando também à mercê da fauna silvestre.

Apenas 13 % dos proprietários limpam o local de parto, se este ocorrer no ovil/cabril, utilizando água (64%) e desinfetante (47%), principalmente hipocloritos ou creolina.

A entrada de fêmeas na exploração para serem cobertas é admitida por alguns Produtores (Indemnes – 19 %; Infectados – 12 %), embora apenas Produtores com rebanhos indemnes (6%) admitam levar as fêmeas do rebanho a outras explorações, para serem cobertas. Verificámos também, que 26 % dos Produtores com rebanhos indemnes empresta machos para cobrição e 16 % pede machos emprestados. Nas explorações infectadas, 14 % admite emprestar machos para cobrição, e apenas 10 % pedem machos emprestados.

7.2.4 Pastor

A região é deficitária em Pastores apesar do salário médio atingir os 150.000$00 com regalias que incluem, casa, água, luz e área para horta, entre outras.

66 % das explorações inquiridas têm Pastor (Indemnes - 36 %; Infectados - 60 %), que com frequência, é também o queijheiro da exploração. Nas restantes explorações, a mão-de-obra é familiar, recorrendo à contratação esporádica de pessoal para trabalhos específicos.

Nas explorações com Pastor, este é proprietário de animais em 19 % das explorações indemnes e em 33 % das infectadas. Os animais pastoreiam com o rebanho do proprietário da exploração em 2 explorações infectadas, o que não foi
observado nas explorações indemnes. Todos os rebanhos são saneados, embora por vezes, em nome do patrão no caso dos rebanhos infectados (20 %).
A contratação de um Pastor com gado, é uma hipótese aceite por 26 % dos Produtores com rebanhos indemnes e por 24 % dos que possuem rebanhos infectados. A maioria admite fazer exigências de saneamento dos animais (Indemnes - 77 %; Infectados - 83 %) mas não o de exigir o certificado sanitário (Indemnes - 5 %; Infectados - 10 %). Para a maioria dos proprietários, o "saneamento" a exigir, refere-se ao Pastor submeter os seus animais à colheita de sangue quando os da exploração forem saneados. Se o Pastor deixar a exploração, é quase unânime, entre os Produtores, que levará os seus animais (Indemnes - 92 %; Infectados - 100 %).

7.2.5 Comércio de pequenos ruminantes

7.2.5.1 Compra

Cerca de 55 % dos Produtores inquiridos compram animais de substituição (Indemnes – 59 %; Infectados – 48 %); os restantes, fazem a reposição do efectivo, a partir de animais nascidos na exploração.
A compra de machos (Indemnes – 92 %; Infectados – 100 %) é superior à compra de fêmeas (Indemnes – 76 %; Infectados – 96 %), assim como a compra de adultos (Indemnes – 80 %; Infectados – 96 %) relativamente a jovens (Indemnes – 71 %; Infectados – 63 %). Enfatize-se que 21 % dos Produtores com rebanhos indemnes e 31 % dos que possuem rebanhos infectados, já compraram um rebanho inteiro, quando compraram “terra” ou a um Produtor que abandona a actividade e vende o rebanho.
A compra de animais é feita, sobretudo, em explorações vizinhas (Indemnes - 76 %; Infectados - 88 %), normalmente na área de intervenção da O.P.P. - Ovibeira, embora também compram animais noutras regiões do País (Indemnes - 46 %; Infectados - 67 %). Só 2 dos Produtores, um com classificação de indemne e o
outro infectado, importaram animais no período de análise. No entanto, a compra de animais de raças exóticas tem vindo a crescer. Lidera estas vendas, uma exploração de Castelo de Vide (Portalegre).

Por seu lado, os negociantes perderam o domínio no mercado de compra e venda de pequenos ruminantes nos últimos anos, sendo reduzido o número de Produtores que ainda lhes compra animais (Indemnes - 14 %; Infectados - 13 %).

A compra em mercados e feiras não tem, actualmente, expressão na região. Refira-se, porém, que até aos anos 70, o comércio de animais era uma importante fonte de rendimento, quer a nível local, quer com regiões como o Alto Alentejo e a Serra da Estrela.

Após a compra, são poucos os Produtores que submetem os animais a um período de quarentena (Indemnes - 12 %; Infectados - 25 %), na maior parte das vezes na pastagem. Alternativamente, no ovil/cabril, numa cerca ou num bardo. A quarentena é limitada a alguns dias, e pretende-se que os animais se adaptem às condições da exploração.

No que se refere ao estado sanitário dos animais a comprar, apenas 24 % dos Produtores com rebanhos indemnes e 38 % dos que têm rebanhos infectados exige saber a data do último saneamento. A colheita de sangue nem sempre é exigida (Indemnes - 42 %; Infectados - 63 %), sendo feita na exploração de origem (Indemnes - 28 %; Infectados - 60 %) ou na exploração de destino (Indemnes - 72 %; Infectados - 47 %).

O certificado sanitário do rebanho de origem é exigido por 37 % dos Produtores com rebanhos indemnes e por 42 % dos que possuem rebanhos infectados. No entanto, em 1997, 1998 e 1999, não foi emitido nem actualizado nenhum certificado sanitário de rebanho na região. Nos anos anteriores, terão sido emitidos cerca de uma dezena de certificados sanitários.

As guias sanitárias para o transporte animal são emitidas por 48 % dos Produtores com rebanhos indemnes e por 67 % dos que possuem rebanhos infectados, mas são poucos os que notificam a OPP (Indemnes - 14 %; Infectados - 17 %). Esta informação é circunscrita a situações singulares como a compra de quotas para o prémio dos ovinos e caprinos. A assessoria do Médico Veterinário é pouco
solicitada pelos Produtores (Indemnes - 37 %; Infectados - 21 %), normalmente após a compra, para que os animais sejam testados.
Existem ainda, um número relativamente grande de Produtores que não fazem qualquer tipo de exigência sanitária no acto da compra, nem a comunica às Autoridades Sanitárias (Indemnes - 32 %; Infectados - 16 %).
Apenas 5% dos Produtores (Indemnes - 4 %; Infectados - 6 %), têm registos de compra e venda de animais. No entanto, com a entrada em vigor do Decreto Lei n.º 338/99, de 24 de Agosto, esta proporção deverá alterar-se rapidamente.

7.2.5.2 Venda

O número de Produtores que vende animais (Indemnes - 26 %; Infectadas - 18 %) é inferior aos que admitiram comprar. A venda de fêmeas gestantes ou já acompanhadas dos borregos, e de fêmeas que tenham abortado é feita por 60 % dos Produtores com rebanhos indemnes, percentagem superior ao que se registara entre os Produtores com rebanhos infectados (35 %). Dos animais vendidos pelas explorações infectadas, 2 % não estavam saneados e 56 % tinham sido saneado há mais de 6 meses. No primeiro caso, trata-se maioritariamente de jovens, o que já não acontece no segundo caso. Todavia, é preciso recordar que a maioria dos rebanhos só é saneada uma vez por ano, pelo que é incontornável, a venda de animais saneados há mais de um ano. Nas explorações indemnes, 77 % dos produtores admite vender animais com saneamento feito a mais de 6 meses.

7.2.6 Cães “de rebanho”

Os cães de rebanho acompanham o Pastor e tem um papel crucial na condução e na defesa dos rebanhos. Apenas em 28 rebanhos não registámos a presença de
cães \((n = 150)\), 5 dos quais rebanhos infectados. A média de cães por rebanho indemne é de \(2,56 \pm 2,30\) e de \(3,84 \pm 3,64\), nos rebanhos infectados.

Para além dos cães "de rebanho", é frequente observar-se outros cães na exploração, que os Produtores, por motivos diversos, não os consideram "de rebanho". Por outro lado, muitos caçadores abandonam os cães no término da época de caça. Estes cães, por vezes organizados em matilha, percorrem a região em busca de alimento, não hesitando em atacar rebanhos de pequenos ruminantes.

7.2.7 Espécies animais cinegéticas

Na região existem muitas Zonas de Caça Associativa integradas nas áreas das explorações pecuárias (Indemnes - 50 %; Infectados - 54 %), onde a criação de espécies animais cinegéticas tem sido incrementada. Consequentemente, decorre nestas zonas uma coexistência entre espécies cinegéticas e rebanhos de pequenos ruminantes.

Os coelhos e as lebres são observados em quase todas as explorações investigadas (Indemnes - 90 %; Infectados - 100 %). O javali, a raposa e as aves de rapina em mais de metade das explorações. Os veados em 21 % das explorações indemnens e em 42 % das infectadas.

7.2.8 Brucelose no rebanho

Os casos de brucelose no rebanho ocorreram em 39 % das explorações indemnes. Nem sempre os Produtores referem casos de brucelose nos machos (Indemnes - 10 %; Infectados - 56 %).

A colheita de sangue é feita na própria exploração, com excepção de 5 rebanhos, todos indemnens, que são saneados nos locais de concentração marcados por Edital.
A existência de animais seropositivos, força os Produtores a isolar os animais (Indemnes - 55 %; Infectados - 62 %). Se houver casos positivos entre as fêmeas prenhes, a maioria dos Produtores isola as fêmeas (Indemnes - 61 %; Infectados - 64 %) e admite abatê-las antes do parto (Indemnes - 53 %; Infectados - 60 %). No entanto, os animais só são isolados após os Serviços Oficiais marcarem a data de abate, e desde que façam a recolha dos animais rapidamente. Caso contrário, os animais permanecem no rebanho.

Um parte dos Produtores afirma que se pode comprar ou vender animais se a exploração estiver sobre sequestro (Indemnes - 55 %; Infectados - 24 %). 53 % dos Produtores com rebanhos indemnes e 18 % dos que possuem rebanhos infectados, não sabem o que é o "sequestro".

Um número relativamente grande de Produtores desconhece a classificação sanitária do seu rebanho (Indemnes - 54 %; Infectados - 34 %) e 1,33 % afirma conhecê-la, todos com rebanhos infectados, mas quando questionados, responderam de forma incorrecta. Ainda, alguns Produtores com rebanhos infectados, limitaram-se a afirmar que o seu rebanho era B2.

7.2.9 Brucelose Humana - “Febre de Malta”

O leite cru de ovino e, sobretudo de caprino, não entra nos hábitos alimentares dos Produtores da região (Indemnes - 10 %; Infectadas - 6 %). O consumo de queijo fresco produzido na exploração é admitido por alguns Produtores (Indemnes - 45 %; Infectadas - 24 %) ou mesmo se fabricado noutra exploração (Indemnes - 17 %; Infectadas - 10 %). A venda de queijo fresco é feita por 25 % dos Produtores com rebanhos indemnes, enquanto só 10 % dos Produtores com rebanhos infectados o faz. No entanto, é superior o número de produtores que vende o queijo mal curado (Indemnes - 67 %; Infectadas - 20 %).

15 % dos Produtores inquiridos e/ou membros da família já tiveram brucelose (Indemnes - 6 %; Infectadas - 34 %). Um dos Produtores com o rebanho infectado referiu a morte do filho devido a sequelas da doença.
7.3 Identificação de factores de risco - regressão logística univariável

7.3.1 Factores associados à exploração e ao sistema de produção

No presente estudo, foram analisadas quase todas as variáveis, independentemente do valor biológico que possam representar na epidemiologia da brucelose animal e humana. Pretende-se identificar possíveis elementos que ajudem a compreender melhor a epidemiologia da doença na região.

O enquadramento jurídico das explorações, assim como a natureza associativa dos Produtores, não parecem influenciar a epidemiologia da brucelose dos pequenos ruminantes, na região (Tabela n.º 50). As variáveis analisadas nesta Tabela indicam diferenças de maneio neste sistema de produção.

O principal produto da exploração - leite - também não parece estar associado à ocorrência da doença, apesar dos Produtores terem maioritariamente, rebanhos constituídos por animais de raças de vocação leiteira, que terão maior susceptibilidade à brucelose do que as raças de carne (Alton, 1985).

A produção de borregos para abate, representa um adicional importante no rendimento anual dos agricultores, bem como a produção de queijo. Contudo, também não foi demonstrada neste estudo, qualquer associação estatística entre a vocação produtiva da exploração e a ocorrência de brucelose.

<table>
<thead>
<tr>
<th>Dados gerais</th>
<th>χ²</th>
<th>p</th>
<th>OR</th>
<th>ICs</th>
<th>%***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociedades/Produtores singulares</td>
<td>1,66*</td>
<td>0,143</td>
<td>0,31</td>
<td>0,03<OR<1,47</td>
<td>9,33</td>
</tr>
<tr>
<td>Associados/não associados</td>
<td>0,75</td>
<td>0,386**</td>
<td>2,14</td>
<td>0,54<OR<12,32</td>
<td>90,00</td>
</tr>
<tr>
<td>Produção de leite</td>
<td>0,38</td>
<td>0,480</td>
<td>1,28</td>
<td>0,61<OR<2,70</td>
<td>40,00</td>
</tr>
<tr>
<td>Produção de queijo</td>
<td>1,17</td>
<td>0,279</td>
<td>1,47</td>
<td>0,69<OR<3,13</td>
<td>36,00</td>
</tr>
<tr>
<td>Produção de carne</td>
<td>0,13*</td>
<td>0,333**</td>
<td>0,00</td>
<td>0,00<OR<19,50</td>
<td>99,33</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher; *** Percentagem do factor nas explorações inquiridas

Tabela n.º 50 - Características gerais das explorações e ocorrência de brucelose
O número de anos de actividade, enquanto Produtores de ovinos e de caprinos, também não se revelou um factor de risco (Tabela n.º 51). No entanto, registou-se que 29 % dos Produtores em actividade até 5 anos, têm os seus rebanhos infectados, provavelmente, devido à compra de animais (79 % compram animais no exterior).

<table>
<thead>
<tr>
<th>Anos de actividade</th>
<th>(\chi^2)</th>
<th>(p)</th>
<th>OR</th>
<th>IC\text{OR}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 5</td>
<td>0,22</td>
<td>0,636</td>
<td>0,79</td>
<td>0,26<OR<2,21</td>
<td>4,67</td>
</tr>
<tr>
<td>6 a 10</td>
<td>0,93</td>
<td>0,334</td>
<td>0,66</td>
<td>0,25<OR<1,63</td>
<td>6,67</td>
</tr>
<tr>
<td>11 a 15</td>
<td>0,02</td>
<td>0,887</td>
<td>0,94</td>
<td>0,36<OR<2,33</td>
<td>32,26</td>
</tr>
<tr>
<td>16 a 20</td>
<td>0,09</td>
<td>0,760</td>
<td>0,87</td>
<td>0,30<OR<2,31</td>
<td>5,53</td>
</tr>
<tr>
<td>> de 20</td>
<td>3,15</td>
<td>0,075</td>
<td>2,01</td>
<td>0,85<OR<4,66</td>
<td>10,67</td>
</tr>
</tbody>
</table>

Tabela n.º 51 - Anos de actividade como Produtor e ocorrência de brucelose

O destino dado ao soro do leite é uma possível fonte de infecção para os suínos (Tabela n.º 52). Embora as Brucella sp. tenham tendência para se fixar nos glóbulos de gordura, após o dessorramento da coalhada, pode ficar retida uma quantidade de gordura no soro, suficiente para aglutinar as Brucella sp., e para infectar ao suínos.

<table>
<thead>
<tr>
<th>Destino do soro do leite</th>
<th>(\chi^2)</th>
<th>(p)</th>
<th>OR</th>
<th>IC\text{OR}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cães</td>
<td>0,18</td>
<td>0,671</td>
<td>0,79</td>
<td>0,23<OR<2,76</td>
<td>23,33</td>
</tr>
<tr>
<td>Suínos</td>
<td>6,86</td>
<td>0,009</td>
<td>9,63</td>
<td>1,60<OR<98,54</td>
<td>15,33</td>
</tr>
<tr>
<td>Vacas</td>
<td>1,99*</td>
<td>0,088**</td>
<td>15,00</td>
<td>0,45<OR<940,98</td>
<td>2,00</td>
</tr>
<tr>
<td>Esgoto</td>
<td>0,94</td>
<td>0,332</td>
<td>1,79</td>
<td>0,46<OR<6,80</td>
<td>10,67</td>
</tr>
</tbody>
</table>

* Correcção de Yates; ** Fisher

Tabela n.º 52 - Destino dos soro do leite e ocorrência de brucelose

As explorações com uma dimensão \(\leq\) 30 hectares, parecem constituir um indicador de protecção relativamente às explorações de maior dimensão (Tabela n.º 53). As explorações \(>\) 30 hectares têm um Odds Ratio de 3,78 (1,40<OR<11,85) em relação às explorações \(\leq\) 30 hectares. Se excluirmos as
explorações com 30 hectares - apenas 3 rebanhos infectados - o Odds Ratio sobe para 7,72 (2,19<OR<41,16).
As explorações > 350 hectares, também parecem constituir um indicador de risco para a ocorrência de brucelose nos pequenos ruminantes.

<table>
<thead>
<tr>
<th>Área da exploração</th>
<th>χ^2</th>
<th>p</th>
<th>OR</th>
<th>IC$_{OR}$</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 30 ha</td>
<td>8,25</td>
<td>0,004</td>
<td>0,26</td>
<td>0,08<OR<0,72</td>
<td>4,00</td>
</tr>
<tr>
<td>30 a 120 ha</td>
<td>1,13</td>
<td>0,288</td>
<td>0,64</td>
<td>0,25<OR<1,54</td>
<td>6,67</td>
</tr>
<tr>
<td>120 a 350 ha</td>
<td>0,07</td>
<td>0,789</td>
<td>1,11</td>
<td>0,46<OR<2,58</td>
<td>8,67</td>
</tr>
<tr>
<td>> 350 ha</td>
<td>14,61</td>
<td>0,000</td>
<td>4,45</td>
<td>1,86<OR<10,70</td>
<td>14,00</td>
</tr>
</tbody>
</table>

Tabela n.º 53 - Área da exploração e ocorrência de brucelose

Verifica-se que à medida que aumenta a área da exploração, aumenta a probabilidade de infecção dos rebanhos (Tabela n.º 54).

<table>
<thead>
<tr>
<th>Área da exploração</th>
<th>χ^2</th>
<th>p</th>
<th>OR</th>
<th>IC$_{OR}$</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 13 ha</td>
<td>8,79*</td>
<td>0,000</td>
<td>13,82</td>
<td>2,07<OR<581,79</td>
<td>32,67</td>
</tr>
<tr>
<td>>25 ha</td>
<td>11,18*</td>
<td>0,001</td>
<td>7,37</td>
<td>2,09<OR<39,38</td>
<td>31,33</td>
</tr>
<tr>
<td>> 30 ha</td>
<td>8,25</td>
<td>0,004</td>
<td>3,78</td>
<td>1,40<OR<11,85</td>
<td>29,33</td>
</tr>
<tr>
<td>> 120 ha</td>
<td>12,02</td>
<td>0,001</td>
<td>3,47</td>
<td>1,60<OR<7,64</td>
<td>22,67</td>
</tr>
<tr>
<td>> 350 ha</td>
<td>14,61</td>
<td>0,000</td>
<td>4,45</td>
<td>1,86<OR<10,70</td>
<td>14,00</td>
</tr>
<tr>
<td>> 500 ha</td>
<td>10,47</td>
<td>0,001</td>
<td>4,42</td>
<td>1,56<OR<13,15</td>
<td>9,33</td>
</tr>
</tbody>
</table>

* Correção de Yates

Tabela n.º 54 - Incremento da área da exploração e ocorrência de brucelose

A dispersão das parcelas das explorações dos Produtores da região, resulta da dificuldade de implementação das políticas de emparcelamento, obrigando os animais a deslocar-se entre parcelas, utilizando caminhos comuns a vários rebanhos. No entanto, não foi possível evidenciar qualquer associação estatística entre a distância entre as parcelas de cada exploração e a ocorrência de brucelose (Tabela n.º 55).
<table>
<thead>
<tr>
<th>Distância máxima entre parcelas</th>
<th>(\chi^2)</th>
<th>(p)</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 500 metros</td>
<td>1,62</td>
<td>0,166</td>
<td>0,21</td>
<td>0,00<OR<1,58</td>
<td>6,67</td>
</tr>
<tr>
<td>1001 a 3000 metros</td>
<td>0,60</td>
<td>0,440</td>
<td>1,34</td>
<td>0,59<OR<2,98</td>
<td>28,00</td>
</tr>
<tr>
<td>até 3000 metros</td>
<td>0,01</td>
<td>0,903</td>
<td>0,96</td>
<td>0,44<OR<2,06</td>
<td>34,67</td>
</tr>
<tr>
<td>3001 a 5000 metros</td>
<td>0,03</td>
<td>0,862</td>
<td>0,91</td>
<td>0,27<OR<2,79</td>
<td>12,67</td>
</tr>
<tr>
<td>mais de 5000 metros</td>
<td>0,34</td>
<td>0,708</td>
<td>1,23</td>
<td>0,34<OR<4,10</td>
<td>10,67</td>
</tr>
</tbody>
</table>

Tabela n.º 55 - Distância entre as parcelas das explorações e ocorrência de brucelose

Apenas em três dos factores estudados, foi evidenciada associação estatística entre a presença do factor e a ocorrência de brucelose: Entrada de animais de rebanhos vizinhos na exploração, compra de animais e uso de bardos (Tabela n.º 56).

A invasão das explorações, por animais de rebanhos vizinhos, é o resultado da insuficiência das barreiras físicas que separam as várias parcelas. Muitas vezes, a divisão das propriedades é feita por ribeiros que secam, em determinadas épocas do ano. O facto de muitos rebanhos pastarem sem Pastor, facilita a incursão dos animais nos pastos das explorações vizinhas.

Refira-se ainda, que geralmente, nos casos de cessação de actividade, a compra de propriedades só se efectua com a compra conjunta do rebanho. No entanto, face ao número reduzido de situações como a referida, apuradas neste estudo (N = 17), os resultados deverão ser analisados com prudência, e confirmados ou refutados por estudos futuros.

O uso de bardos revelou-se como um importante factor de risco (OR = 5,63) para a ocorrência de brucelose na exploração. Os animais permanecem nos bardos durante longos períodos de tempo, nomeadamente durante a noite, e em especial no Verão. Os bardos são também utilizados como local de ordenha, nas explorações sem sala de ordenha, e como local de parto.

O recurso a bardos, que mudam de sitio periodicamente, permite uma adubação natural dos pastos, reduzindo custos com a aquisição de adubos comerciais, mão-de-obra e equipamento.
<table>
<thead>
<tr>
<th>Factores</th>
<th>(\chi^2)</th>
<th>(p)</th>
<th>OR</th>
<th>IC(_{OR})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastos não contínuos</td>
<td>0,00</td>
<td>1</td>
<td>1</td>
<td>0,48<OR<2,12</td>
<td>58,00</td>
</tr>
<tr>
<td>Outra freguesia</td>
<td>2,9</td>
<td>0,0883</td>
<td>2,11</td>
<td>0,81<OR<5,53</td>
<td>16,67</td>
</tr>
<tr>
<td>Pastos não aramados ou murados</td>
<td>0,42</td>
<td>0,52</td>
<td>1,29</td>
<td>0,56<OR<3,11</td>
<td>72,67</td>
</tr>
<tr>
<td>Pastos comuns a outros rebanhos</td>
<td>0,43</td>
<td>0,51</td>
<td>1,29</td>
<td>0,56<OR<2,90</td>
<td>26,67</td>
</tr>
<tr>
<td>Caminhos comuns a outros rebanhos</td>
<td>0,06</td>
<td>0,81</td>
<td>1,09</td>
<td>0,51<OR<2,33</td>
<td>60,67</td>
</tr>
<tr>
<td>Zonas de passagem de rebanhos</td>
<td>0,66</td>
<td>0,417</td>
<td>1,41</td>
<td>0,58<OR<3,60</td>
<td>76,00</td>
</tr>
<tr>
<td>Entrada de animais</td>
<td>7,72</td>
<td>0,0054</td>
<td>3,02</td>
<td>1,29<OR<7,49</td>
<td>64,67</td>
</tr>
<tr>
<td>Passagem de animais para pastos vizinhos</td>
<td>2,30</td>
<td>0,129</td>
<td>1,72</td>
<td>0,81<OR<3,74</td>
<td>42,00</td>
</tr>
<tr>
<td>Locais de abeberamento</td>
<td>2,65</td>
<td>0,103</td>
<td>0,52</td>
<td>0,22<OR<1,21</td>
<td>30,67</td>
</tr>
<tr>
<td>Sequeiro</td>
<td>0,03*</td>
<td>1,000**</td>
<td>1,52</td>
<td>0,12<OR<81,16</td>
<td>97,33</td>
</tr>
<tr>
<td>Regadio</td>
<td>1,17</td>
<td>0,279</td>
<td>1,47</td>
<td>0,68<OR<3,16</td>
<td>36,00</td>
</tr>
<tr>
<td>Comprovou pastos</td>
<td>0,24</td>
<td>0,625</td>
<td>1,20</td>
<td>0,55<OR<2,59</td>
<td>33,33</td>
</tr>
<tr>
<td>Tinham animais</td>
<td>0,15*</td>
<td>0,669</td>
<td>0,64</td>
<td>0,14<OR<2,59</td>
<td>11,33</td>
</tr>
<tr>
<td>Comprovou os animais</td>
<td>5,62</td>
<td>0,009</td>
<td>44,0</td>
<td>1,47<OR<2350,96</td>
<td>3,33</td>
</tr>
<tr>
<td>Pensa adquirir pastos</td>
<td>1,13</td>
<td>0,288</td>
<td>0,64</td>
<td>0,25<OR<1,54</td>
<td>25,33</td>
</tr>
<tr>
<td>Se comprar, compra com animais</td>
<td>0,22</td>
<td>0,636</td>
<td>0,79</td>
<td>0,26<OR<2,21</td>
<td>16,00</td>
</tr>
<tr>
<td>Cabril/ovil</td>
<td>3,04*</td>
<td>0,081**</td>
<td>6,68</td>
<td>0,93<OR<291,36</td>
<td>91,33</td>
</tr>
<tr>
<td>Bardos</td>
<td>5,05</td>
<td>0,0246</td>
<td>5,63</td>
<td>1,26<OR<51,52</td>
<td>86,00</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher

Tabela n.º 56 - Factores ligados ao sistema de produção e às políticas de repovoamento e ocorrência de brucelose

As camas de terra revelaram uma associação estatística significativa com a ocorrência de brucelose. Este tipo de cama é utilizada em 33 % das explorações mas nem sempre como cama única (Tabela n.º 57). 48 % das explorações com este tipo de cama estão classificadas como infectadas.

A terra permite a acumulação de matéria orgânica, sem que ocorram níveis de dissecação e de fermentação elevados, pelo menos durante parte do ano. Segundo Plommet (1972), a *Brucella* sp. sobrevive 70 a 80 dias no estrume espalhado nos prados. Por outro lado, o pisteio sobre camas de terra, aumenta as poeiras em suspensão, que ao serem inaladas ou ao depositarem-se sobre a conjuntiva.
poderão induzir a infecção, especialmente, em espaços confinados como os bardos ou os ovis/cabris. Segundo o mesmo Autor, a sobrevivência das *Brucella* sp. na poeira, varia entre 15 a 40 dias, dependendo da humidade no meio ambiente.

<table>
<thead>
<tr>
<th>Tipo de cama</th>
<th>(\chi^2)</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra</td>
<td>7,26</td>
<td>0,007</td>
<td>2,63</td>
<td>1,21<OR<5,68</td>
<td>33,33</td>
</tr>
<tr>
<td>Palha</td>
<td>2,20</td>
<td>0,138</td>
<td>2,07</td>
<td>0,74<OR<6,69</td>
<td>81,33</td>
</tr>
<tr>
<td>Cimento</td>
<td>0,20</td>
<td>0,658</td>
<td>0,39</td>
<td>0,01<OR<3,62</td>
<td>4,00</td>
</tr>
<tr>
<td>Mato/Aparas de Madeira</td>
<td>1,62</td>
<td>0,203</td>
<td>0,21</td>
<td>0,00<OR<1,58</td>
<td>6,67</td>
</tr>
</tbody>
</table>

Tabela n.º 57 - Tipos de cama e ocorrência de brucelose

Após a sua remoção, as camas servem para adubar os terrenos. Nesta operação, os Produtores podem disseminar a bactéria nos pastos.

As condições climáticas da região, nomeadamente temperatura, humidade e ocorrência de geadas, asseguram junto com a presença de matéria orgânica, condições de sobrevivência da *Brucella sp.* nas camas de terra.

A frequência de remoção das camas não foi identificada como factor de risco da ocorrência de brucelose \(\chi^2 = 0,02, p = 0,8548\).

7.3.2 Factores associados à composição e à estrutura do rebanho

Nenhum tipo de rebanho exibiu uma probabilidade mais elevada de ocorrência de brucelose (Tabela n.º 58). Nos caprinos, cuja prevalência da brucelose se tem mantido muito baixa nos últimos anos, o número de rebanhos incluídos na amostra foi de apenas sete, o que condicionou a clarificação do papel desta espécie animal, no ciclo epidemiológico da brucelose na região.
<table>
<thead>
<tr>
<th>Tipo por rebanho</th>
<th>χ^2</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovelhas / Caprinos</td>
<td>0,63</td>
<td>0,426</td>
<td>3,50</td>
<td>0,39<OR<165,51</td>
<td>35,29</td>
</tr>
<tr>
<td>Ovelhas / Misto</td>
<td>0,83</td>
<td>0,361</td>
<td>1,42</td>
<td>0,63<OR<3,26</td>
<td>34,27</td>
</tr>
<tr>
<td>Misto / Caprinos</td>
<td>0,14</td>
<td>0,710</td>
<td>2,47</td>
<td>0,26<OR<121,64</td>
<td>27,27</td>
</tr>
<tr>
<td>Ovelhas</td>
<td>1,44</td>
<td>0,230</td>
<td>1,56</td>
<td>0,72<OR<3,47</td>
<td>23,33</td>
</tr>
<tr>
<td>Caprinos</td>
<td>0,47</td>
<td>0,493</td>
<td>0,32</td>
<td>0,01<OR<2,77</td>
<td>0,67</td>
</tr>
<tr>
<td>Misto</td>
<td>0,55</td>
<td>0,458</td>
<td>0,75</td>
<td>0,34<OR<1,69</td>
<td>9,33</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher

Tabela n.º 58 - Tipo de rebanho e ocorrência de brucelose

Os pequenos rebanhos de ovinos parecem não são um problema nas tendências de ocorrência de brucelose na região (Tabela n.º 59), confirmando os resultados obtidos por outros Autores noutras regiões (Vaz, 1996; Abela, 1999; Reviriego et al., 2000) e pelos resultados obtidos no Programa de Erradicação da Brucelose nos Pequenos Ruminantes, na área de intervenção da O.P.P. – Ovibeira, nos últimos anos. Estes rebanhos não têm contraído brucelose, provavelmente porque a reposição do efectivo é feita a partir de cria de nascidas no próprio rebanho. Estes rebanhos estão localizados em áreas restritas e a sua produção é dirigida para o auto-consumo.

Os rebanhos de 100 a 200 ovelhas são um factor de risco para a ocorrência de brucelose (Tabela n.º 59). Comparando os rebanhos com menos de 57 ovelhas (Percentil 25 %) com os restantes, estes últimos exibem um Odds Ratio de 5,81 ($\chi^2 = 8,2; \ p<0,05; \ 1,93<OR<17,50$) relativamente aos primeiros.

Verifica-se que à medida que aumenta o número de ovelhas por rebanho, há uma tendência para aumentar o risco de ocorrência de brucelose. O número exíguo de rebanhos investigados >500 cabeças, não permitiu evidenciar associações estatística nestas categorias (Tabela n.º 60).
<table>
<thead>
<tr>
<th>Número de ovelhas/rebanho</th>
<th>χ^2</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20</td>
<td>7,76</td>
<td>0,005</td>
<td>7,76</td>
<td>0,00<OR<0,44</td>
<td>0,00</td>
</tr>
<tr>
<td>21 a 50</td>
<td>0,52</td>
<td>0,470</td>
<td>0,55</td>
<td>0,12<OR<1,94</td>
<td>23,53</td>
</tr>
<tr>
<td>51 a 100</td>
<td>0,99</td>
<td>0,319</td>
<td>0,51</td>
<td>0,14<OR<1,59</td>
<td>22,73</td>
</tr>
<tr>
<td>101 a 200</td>
<td>6,84</td>
<td>0,009</td>
<td>3,49</td>
<td>1,19<OR<10,62</td>
<td>60,00</td>
</tr>
<tr>
<td>201 a 300</td>
<td>0,07</td>
<td>0,793</td>
<td>0,88</td>
<td>0,28<OR<2,51</td>
<td>31,82</td>
</tr>
<tr>
<td>301 a 400</td>
<td>0,35</td>
<td>0,550</td>
<td>0,55</td>
<td>0,09<OR<2,24</td>
<td>21,43</td>
</tr>
<tr>
<td>401 a 500</td>
<td>1,94</td>
<td>0,047</td>
<td>5,23</td>
<td>0,81<OR<56,23</td>
<td>71,43</td>
</tr>
<tr>
<td>501 a 600</td>
<td>1,05</td>
<td>0,078</td>
<td>3,14</td>
<td>0,70<OR<15,81</td>
<td>60,00</td>
</tr>
<tr>
<td>> 600</td>
<td>1,14</td>
<td>0,284</td>
<td>1,79</td>
<td>0,51<OR<6,06</td>
<td>46,67</td>
</tr>
</tbody>
</table>

Tabela n.º 59 - Número de ovelhas por rebanho e ocorrência de brucelose

No entanto, nos rebanhos >374 animais (Percentil 75 %) o Odds Ratio de ocorrência de brucelose é de 3,63 ($\chi^2 = 10,77; \ p<0,051; \ 52<OR<8,68$).

<table>
<thead>
<tr>
<th>Número de ovelhas/ rebanho</th>
<th>χ^2</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 30</td>
<td>6,71</td>
<td>0,010</td>
<td>5,26</td>
<td>1,45<OR<28,56</td>
<td>39,66</td>
</tr>
<tr>
<td>> 50</td>
<td>8,11</td>
<td>0,004</td>
<td>5,02</td>
<td>1,59<OR<20,81</td>
<td>40,91</td>
</tr>
<tr>
<td>> 100</td>
<td>12,72</td>
<td>0,000</td>
<td>4,26</td>
<td>1,76<OR<11,03</td>
<td>45,45</td>
</tr>
<tr>
<td>>200</td>
<td>2,75</td>
<td>0,097</td>
<td>1,80</td>
<td>0,85<OR<3,85</td>
<td>41,18</td>
</tr>
<tr>
<td>>300</td>
<td>3,90</td>
<td>0,048</td>
<td>2,07</td>
<td>0,93<OR<4,55</td>
<td>54,35</td>
</tr>
<tr>
<td>>400</td>
<td>8,85</td>
<td>0,003</td>
<td>3,32</td>
<td>1,36<OR<8,12</td>
<td>56,25</td>
</tr>
<tr>
<td>>500</td>
<td>4,23</td>
<td>0,040</td>
<td>2,47</td>
<td>0,93<OR<6,52</td>
<td>52,00</td>
</tr>
<tr>
<td>>600</td>
<td>1,14</td>
<td>0,284</td>
<td>1,79</td>
<td>0,51<OR<6,06</td>
<td>46,67</td>
</tr>
<tr>
<td>>700</td>
<td>0,81</td>
<td>0,234</td>
<td>2,70</td>
<td>0,43<OR<19,05</td>
<td>57,14</td>
</tr>
</tbody>
</table>

Tabela n.º 60 - Dimensão do efectivo ovino e ocorrência de brucelose

A existência de ≤ 2 carneiros por rebanho, parece constituir um factor de protecção nos rebanhos de ovinos, relativamente à ocorrência de brucelose (Tabela n.º 61). Os rebanhos com mais de 2 carneiros têm um Odds Ratio de ocorrência de brucelose de 5,81 ($\chi^2 = 8,2; \ p<0,051; \ 93<OR<17,50$) em relação aos rebanhos com um ou dois carneiros.
Os carneiros têm sido descritos como potenciais fontes de infecção para as ovelhas, sobretudo durante a monta em que funcionam como vectores mecânicos de *Brucella* sp. Os carneiros pastoreiam com as ovelhas durante o período de cobrição, pelo que a transmissão sexual da infecção pode acontecer com facilidade, sobretudo porque as ovelhas manifestam cío, em simultâneo.

Até ao momento, não foi identificada a presença de *Brucella ovis*, mas deve ser considerada a hipótese da sua presença, pelo menos até que se confirme que esta espécie de *Brucella* não afecta os animais da região.

No caso dos rebanhos de caprinos, não foi evidenciada qualquer associação estatística entre o número de cabras presente e a ocorrência de brucelose (Tabela n.º 62).

Tabela n.º 61 - Número de carneiros por rebanho e ocorrência de brucelose

<table>
<thead>
<tr>
<th>Número de carneiros/rebanho</th>
<th>χ²</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 2</td>
<td>12,01</td>
<td>0,001</td>
<td>0,21</td>
<td>0,07<OR<0,56</td>
<td>13,64</td>
</tr>
<tr>
<td>3 a 6</td>
<td>2,70</td>
<td>0,100</td>
<td>1,91</td>
<td>0,81<OR<4,47</td>
<td>45,71</td>
</tr>
<tr>
<td>7 a 12</td>
<td>0,62</td>
<td>0,430</td>
<td>1,36</td>
<td>0,88<OR<3,12</td>
<td>39,47</td>
</tr>
<tr>
<td>Mais de 12</td>
<td>1,99</td>
<td>0,158</td>
<td>1,85</td>
<td>0,70<OR<4,78</td>
<td>42,86</td>
</tr>
</tbody>
</table>

Tabela n.º 62 - Número de cabras por rebanho e ocorrência de brucelose

<table>
<thead>
<tr>
<th>Número de cabras/rebanho</th>
<th>χ²</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 6</td>
<td>0,05</td>
<td>0,825</td>
<td>0,66</td>
<td>0,10<OR<3,18</td>
<td>21,43</td>
</tr>
<tr>
<td>7 a 20</td>
<td>0,16</td>
<td>0,688</td>
<td>0,58</td>
<td>0,09<OR<2,78</td>
<td>20,00</td>
</tr>
<tr>
<td>21 a 40</td>
<td>0,00</td>
<td>0,974</td>
<td>0,25</td>
<td>0,23<OR<5,71</td>
<td>30,77</td>
</tr>
<tr>
<td>Mais de 40</td>
<td>0,46</td>
<td>0,496</td>
<td>2,00</td>
<td>0,41<OR<8,88</td>
<td>38,46</td>
</tr>
</tbody>
</table>

Os caprinos não parecem constituir um perigo para a disseminação ou a persistência de brucelose na região, provavelmente por terem sido, ao longo de décadas, o alvo privilegiado das Autoridades Sanitárias Portuguesas no combate à brucelose. No entanto, é preciso manter sob vigilância esta espécie pois a maioria dos rebanhos com caprinos são explorados em conjunto com os ovinos.

A presença de bodes na exploração não foi associada à ocorrência de brucelose nos rebanhos de caprinos da região (Tabela n.º 63).
<table>
<thead>
<tr>
<th>Número de bodes/rebanho</th>
<th>χ²</th>
<th>P</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem bodes</td>
<td>0,03</td>
<td>0,858</td>
<td>1,18</td>
<td>0,17<OR<6,28</td>
<td>30,00</td>
</tr>
<tr>
<td>1</td>
<td>1,51</td>
<td>0,219</td>
<td>0,34</td>
<td>0,05<OR<1,56</td>
<td>15,00</td>
</tr>
<tr>
<td>2</td>
<td>0,32</td>
<td>0,571</td>
<td>1,76</td>
<td>0,41<OR<7,12</td>
<td>35,29</td>
</tr>
<tr>
<td>Mais de 2</td>
<td>1,76</td>
<td>0,185</td>
<td>2,25</td>
<td>0,57<OR<9,20</td>
<td>37,50</td>
</tr>
</tbody>
</table>

Tabela n.º 63 - Número de cabras por rebanho e ocorrência de brucelose

A elevada proporção de rebanhos sem bode, sobretudo nos rebanhos de pequena dimensão pode ter influenciado os resultados. Por exemplo, em 1998, 42,3% dos rebanhos com cabras saneados na campanha, não registavam a presença de bodes, enquanto que apenas 4,9% dos rebanhos com ovinos não registavam a presença de carneiros.

Se em alguns dos casos poderá ter sido omitida a presença de machos, por negligência no preenchimento da folha de campo, é um facto que a maior parte dos rebanhos de pequena dimensão, recorre a machos emprestados para a cobrição das fêmeas.

Não existindo bodes na exploração, só há cobrição se o Produtor pedir um macho emprestado ou se levar as cabras para serem cobertas noutra exploração. Já referimos que os rebanhos de caprinos da região estão praticamente livres de brucelose mas as práticas de maneio reprodutivo poderão pôr em causa esse estatuto sanitário.

7.3.3 Factores associados à época de partos

A época de partos representa o período mais crítico para a disseminação da infecção brucelica nas espécies animais (Fensterbank, 1987; Alton, 1985).

Na região, a época de partos têm vindo a ser prolongada com o objectivo de assegurar a oferta de leite para a laboração de queijo ao longo de todo o ano. Todavia, este objectivo é contrariado pela cíclicidade reprodutiva dos pequenos...
ruminantes e pela sazonalidade da procura de carne de borrego e de cabrito que cria os melhores preços no Natal e na Páscoa.
Os meses de Março, Outubro e Dezembro parecem representar os meses de maior risco para a ocorrência de brucelose: Odds Ratios de 2,90, 3,44 e 2,07, respectivamente (Tabela n.º 64).

<table>
<thead>
<tr>
<th>Épocas de parição</th>
<th>Z²</th>
<th>p</th>
<th>OR</th>
<th>IC_{OR}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeiro</td>
<td>2,25</td>
<td>0,133</td>
<td>1,69</td>
<td>0,81<OR<3,58</td>
<td>51,33</td>
</tr>
<tr>
<td>Fevereiro</td>
<td>1,61</td>
<td>0,203</td>
<td>1,54</td>
<td>0,74<OR<3,27</td>
<td>48,67</td>
</tr>
<tr>
<td>Março</td>
<td>9,12</td>
<td>0,0025</td>
<td>2,90</td>
<td>1,36<OR<6,24</td>
<td>44,67</td>
</tr>
<tr>
<td>Abril</td>
<td>0,82</td>
<td>0,36</td>
<td>1,41</td>
<td>0,62<OR<3,16</td>
<td>27,33</td>
</tr>
<tr>
<td>Maio</td>
<td>0,00</td>
<td>1</td>
<td>1,00</td>
<td>0,32<OR<2,89</td>
<td>14,00</td>
</tr>
<tr>
<td>Junho</td>
<td>0,00*</td>
<td>1**</td>
<td>1,00</td>
<td>0,34<OR<2,72</td>
<td>16,00</td>
</tr>
<tr>
<td>Julho</td>
<td>0,06*</td>
<td>0,801**</td>
<td>2,02</td>
<td>0,02<OR<160,17</td>
<td>0,67</td>
</tr>
<tr>
<td>Agosto</td>
<td>0,07</td>
<td>0,784</td>
<td>0,89</td>
<td>0,36<OR<2,13</td>
<td>23,33</td>
</tr>
<tr>
<td>Setembro</td>
<td>0,01</td>
<td>0,902</td>
<td>0,96</td>
<td>0,44<OR<2,11</td>
<td>66,67</td>
</tr>
<tr>
<td>Outubro</td>
<td>4,12*</td>
<td>0,04</td>
<td>3,44</td>
<td>1,07<OR<14,42</td>
<td>82,00</td>
</tr>
<tr>
<td>Novembro</td>
<td>3,04</td>
<td>0,08</td>
<td>1,99</td>
<td>0,86<OR<4,84</td>
<td>68,67</td>
</tr>
<tr>
<td>Dezembro</td>
<td>3,97</td>
<td>0,046</td>
<td>2,07</td>
<td>0,95<OR<4,60</td>
<td>58,67</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher

Tabela n.º 64 - Distribuição dos partos ao longo do ano e ocorrência de brucelose

Nestes meses, o clima é mais brando: a temperatura, a humidade, a geada e a precipitação, contribuem então, para uma sobrevida acrescida da Brucella sp., ao contrário do que sucede nos meses de Verão.
Em termos de número de fêmeas a parir, representam dois períodos importantes, sobretudo o mês de Outubro. Em Março, parecem sobretudo as ovelhas e as cabras que não pariram na 1ª época de partos (Setembro a meados de Novembro).
A época de partos deveria ser considerada na calendarização das colheitas de sangue. Estas iniciam-se, sobretudo, a partir de Março, e as segundas colheitas nesses rebanhos, decorrem geralmente a partir de Outubro, e são usualmente em menor número (Gráfico n.º 21).

Os rebanhos infectados são os primeiros a ser saneados, ficando as colheitas posteriores para o final de ano (Gráfico n.º 22).

Desta forma, as colheitas são feitas após o início das épocas de parto, permitindo que os animais infectados possam parir, contaminando o meio ambiente, antes de serem detectados como seropositivos e abatidos. Por outro lado, ao fazer coincidir a época de partos com as colheitas de sangue, muitos animais são saneados após a parição, período em há um a queda do título de anticorpos séricos, provavelmente.
associada à produção de colostro, que pode originar resultados falso-negativos (Graat and Casals, 1995). Nesta fase, as fêmeas não se apresentam nas melhores condições físicas, devido ao esforço desenvolvido durante o parto e ao stress que o parto representa, com compromisso da resposta imunitária.
Assim, a presença de jovens fêmeas não vacinadas, e eventualmente de fêmeas suscetíveis compradas noutras exploracções, ajudam a perpetuar a infecção por Brucella melitensis. Independentemente do período de incubação da doença - 4 a 140 dias nos pequenos ruminantes (Plommet, 1972) - na seguinte época de partos, estas fêmeas serão uma importante fonte de infecção, ao eliminarem a Brucella melitensis para o meio ambiente, durante o parto ou aborto, se entretanto não tiverem sido detectadas e removidas do rebanho.
As temperaturas muito elevadas que se fazem sentir nos meses de Verão (> 40°C), a falta de precipitação, a pobreza dos prados, permite que a radiação solar tenha um efeito “esterilizante” sobre os terrenos. Além disso, os partos que ocorrem nesses meses são esporádicos, pelo que durante este período, a probabilidade de ocorrência de novos casos de brucelose deve ser baixa. Cremos que esta interpretação pode explicar o menor número de reagentes identificados nas 2ªs colheitas, que decorrem a partir de meados de Setembro.
A contaminação eventual do meio ambiente, de Setembro a Novembro, acompanhada da precipitação que se observa nos meses seguintes e a geada nos meses de Inverno, pode contribuir para a persistência da Brucella melitensis no meio ambiente.
Consequentemente, as colheitas de sangue deveriam ser sempre intervaladas por uma época de partos. O teste antes do parto, identificaria as fêmeas infectadas antes da ocorrência de um aborto ou do parto, diminuindo a contaminação do meio ambiente. A fase de bacteriémia no período anterior ao parto, provoca uma subida no título de anticorpos, facilitando o diagnóstico dos animais portadores (Graat and Casals, 1995). O teste após a época de partos, identificaria os animais que se infectaram numa fase adiantada da gestação, e eventualmente, as fêmeas que pariram pela primeira vez sem terem sido testadas. Desta forma, o perfil das curvas apresentadas nos Gráficos n.º 21 e n.º 22 seria alterado, com dois picos em Janeiro-Fevereiro e Maio-Junho-Julho-Agosto.
Os Produtores separam as fêmeas na eminência do parto, mas em grupos. Esta separação, feita no ovil/cabril, em pastagens próprias, aramadas ou em bardos, reflects-se num Odds Ratio de ocorrência de brucelose de 2,33 relativamente às explorações que não fazem a separação das fêmeas (Tabela n.º 65).

<table>
<thead>
<tr>
<th>Parto</th>
<th>(\chi^2)</th>
<th>p</th>
<th>OR</th>
<th>I(_{\text{OR}})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separa as fêmeas no parto</td>
<td>5,43</td>
<td>0,019</td>
<td>2,33</td>
<td>1,08<OR<5,18</td>
<td>56,67</td>
</tr>
<tr>
<td>Onde calha</td>
<td>3,45</td>
<td>0,063</td>
<td>1,94</td>
<td>0,91<OR<4,21</td>
<td>55,33</td>
</tr>
<tr>
<td>Pasto</td>
<td>4,08</td>
<td>0,0433</td>
<td>7,98</td>
<td>1,14<OR<344,04</td>
<td>90,00</td>
</tr>
<tr>
<td>Bardo</td>
<td>7,33</td>
<td>0,00676</td>
<td>3,40</td>
<td>1,27<OR<7,85</td>
<td>67,33</td>
</tr>
<tr>
<td>Ovil/Cabril</td>
<td>1,40</td>
<td>0,236</td>
<td>1,63</td>
<td>0,68<OR<4,15</td>
<td>74,00</td>
</tr>
<tr>
<td>Vão para a pastagem com as outras</td>
<td>0,07</td>
<td>0,792</td>
<td>1,13</td>
<td>0,42<OR<2,99</td>
<td>23,33</td>
</tr>
<tr>
<td>Limpa o local de parto</td>
<td>0,19*</td>
<td>0,664</td>
<td>0,68</td>
<td>0,18<OR<2,18</td>
<td>12,67</td>
</tr>
<tr>
<td>Água</td>
<td>0,14*</td>
<td>0,602</td>
<td>3,00</td>
<td>0,20<OR<171,95</td>
<td>8,00</td>
</tr>
<tr>
<td>Desinfectante</td>
<td>1,39*</td>
<td>0,1408</td>
<td>7,20</td>
<td>0,47<OR<392,99</td>
<td>6,00</td>
</tr>
</tbody>
</table>

Tabela n.º 65 - Maneio do parto e ocorrência de brucelose

Se compararmos a separação em bardos ou em aramadas no pasto, com a separação no ovil/cabril, obtemos um Odds Ratio de 2,87 (\(\chi^2 = 6,35; \) p=0,0111; 13<OR<7,25).

A sobrevivência da Brucella no pasto, depende das condições climatéricas e da presença de matéria orgânica. A ocorrência dos partos numa época favorável à sua sobrevivência, agrava o papel da pastagem como fonte da infeccão brucelica. A Portaria 1051/91, refere no caso do repovoamento animal após o mortício de um rebanho, que nas pastagens onde permaneceram animais infectados, deve ser assegurado um período de vazio sanitário de 2 meses no Inverno e 30 dias no Verão. No entanto, num rebanho infectado sujeito apenas ao abate parcial dos animais reagentes, também há contaminação do meio ambiente, e não se deve descruar a possibilidade de transmissão da infeccão a animais sãos e susceptíveis.

Os bardos, já identificados como importantes factores de risco, confirmam o seu papel na epidemiologia da brucelose na região. Durante a época de partos, os bardos promovem o contacto dos animais com doses infectantes viáveis da Brucella melitensis. A mistura de animais sãos com portadores, na altura do parto
(aborto) num espaço confinado é determinante para a génese de novos casos de brucelose (Alton, 1990; Garin-Bastuji et al., 1998).
Os abortos e os nado-mortos permanecem um problema nos rebanhos de pequenos ruminantes infectados (Garin-Bastuji et al., 1998) e foram identificados no presente estudo, como importantes factores de risco da ocorrência de brucelose nos rebanhos de pequenos ruminantes (Tabela n.º 66). Segundo os Produtores, a frequência de abortos e de nado-mortos é baixa, o que pode ser consequência da baixa prevalência intra-rebanho.

<table>
<thead>
<tr>
<th>Patologia reprodutiva</th>
<th>(\chi^2)</th>
<th>P</th>
<th>OR</th>
<th>IC(_{OR})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortos</td>
<td>14,41</td>
<td>0,000146</td>
<td>3,93</td>
<td>1,79<OR<8,65</td>
<td>33,33</td>
</tr>
<tr>
<td>Nado mortos</td>
<td>10,24</td>
<td>0,0013</td>
<td>3,17</td>
<td>1,45<OR<6,91</td>
<td>32,67</td>
</tr>
<tr>
<td>Mortes na 1ª semana de vida</td>
<td>0,14</td>
<td>0,705</td>
<td>1,15</td>
<td>0,51<OR<2,54</td>
<td>30,00</td>
</tr>
</tbody>
</table>

Tabela n.º 66 - Patologia reprodutiva e ocorrência de brucelose

À medida que a prevalência de brucelose baixa, nas populações de pequenos ruminantes, diminuem os casos de aborto mas outros sintomas, como as metrites e as retenções placêntarias, assumem progressivamente maior importância nos rebanhos infectados (Garin-Bastuji et al., 1998).

As placens são fonte de alimento para os cães em 54% das explorações investigadas. A importância epidemiológica dos cães na persistência da brucelose nos rebanhos de pequenos ruminantes, será referida posteriormente, mas constituem um importante factor de risco (Tabela n.º 67).

<table>
<thead>
<tr>
<th>.Destino das secundinas</th>
<th>(\chi^2)</th>
<th>P</th>
<th>OR</th>
<th>IC(_{OR})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cães</td>
<td>14,61</td>
<td>0,00013</td>
<td>4,20</td>
<td>1,86<OR<9,83</td>
<td>54,00</td>
</tr>
<tr>
<td>Ficam no local de parto</td>
<td>0,65</td>
<td>0,418</td>
<td>0,76</td>
<td>0,36<OR<1,58</td>
<td>50,67</td>
</tr>
<tr>
<td>Enterra</td>
<td>1,48</td>
<td>0,223</td>
<td>0,59</td>
<td>0,22<OR<1,46</td>
<td>24,00</td>
</tr>
<tr>
<td>Queima</td>
<td>0,06*</td>
<td>1,000**</td>
<td>2,02</td>
<td>0,02<OR<160,02</td>
<td>1,33</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher

Tabela n.º 67 - Destino das secundinas e ocorrência de brucelose
As placentas permanecem no local do parto/aborto, nomeadamente nos prados, aumentando o risco de contaminação dos animais sãos e susceptíveis do rebanho e da fauna silvestre.

Por outro lado, enterrar as placentas não é uma medida preventiva eficaz, devendo ser desencorajada. Os cães e predadores como as raposas, facilmente desenterram essas placentas, caso não sejam enterradas a uma profundidade considerável. A constituição dos solos da região - xisto e granito - obriga ao recurso a equipamento pesado, que não existe em muitas explorações, para se abrir uma cova suficientemente profunda.

Por outro lado, a água utilizada nas explorações é obtida através de furos, e apesar de improvável, existe sempre o perigo de contaminação de lençóis friáticos, no caso de enterramento das placentas.

Em relação à cobrição das fêmeas, e apesar de nenhum dos factores estudados ter sido identificado como factor de risco, as práticas de alguns Produtores são preocupantes e revelam desconhecimento acerca da biologia da doença, nomeadamente, o facto da maioria dos Produtores colocar à cobrição fêmeas que abortaram (93,3%) (Tabela n.º 68).

<table>
<thead>
<tr>
<th>Maneio reprodutivo</th>
<th>(\chi^2)</th>
<th>p</th>
<th>OR</th>
<th>IC(_{OR})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobrição de fêmeas que abortaram</td>
<td>0,01*</td>
<td>1,00**</td>
<td>1,18</td>
<td>0,25<OR<7,38</td>
<td>93,33</td>
</tr>
<tr>
<td>Entrada de fêmeas para serem cobertas</td>
<td>1,18</td>
<td>0,278</td>
<td>0,58</td>
<td>0,18<OR<1,66</td>
<td>16,67</td>
</tr>
<tr>
<td>Fêmeas cobertas noutra exploração</td>
<td>1,76*</td>
<td>0,179**</td>
<td>0,00</td>
<td>0,00<OR<1,67</td>
<td>4,00</td>
</tr>
<tr>
<td>Empresta machos</td>
<td>2,80</td>
<td>0,094</td>
<td>0,46</td>
<td>0,16<OR<1,22</td>
<td>22,00</td>
</tr>
<tr>
<td>Pede machos emprestados</td>
<td>0,56*</td>
<td>0,454</td>
<td>0,58</td>
<td>0,16<OR<1,82</td>
<td>14,00</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher

Tabela n.º 68 - Maneio reprodutivo e ocorrência de brucelose

Constata-se também a troca de reprodutores entre explorações, que está subestimada nos nossos resultados, se considerarmos a proporção de rebanhos sem reprodutores machos, como já referimos.
7.3.4 Factores asociados ao pastor

Embora uma figura do Pastor esteja a desaparecer de muitas explorações da região, o seu papel na epidemiologia da brucelose não deve ser negligenciado.

Os resultados obtidos no presente estudo (Tabela n.º 69), em relação à posse de animais pelo Pastor, não permitiriam evidenciar uma probabilidade de ocorrência de brucelose maior nas explorações com Pastor. Sabemos, porém, que alguns rebanhos se infectaram após a contratação de Pastores com rebanho próprio, e que anteriormente tinham contactado com rebanhos infectados.

A necessidade de contratar Pastores, sobretudo nos rebanhos de média e de grande dimensão, associada a uma procura superior à oferta, provoca a mobilidade de Pastores, de exploração para exploração, levando consigo animais, que se infectados, rapidamente introduzem a Brucella melitensis em rebanhos indemnes.

<table>
<thead>
<tr>
<th>Pastor</th>
<th>(\chi^2)</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tem pastor</td>
<td>7,79</td>
<td>0,005</td>
<td>2,67</td>
<td>1,25<OR<5,70</td>
<td>44,00</td>
</tr>
<tr>
<td>Pastor com gado</td>
<td>1,65</td>
<td>0,199</td>
<td>3,88</td>
<td>0,59<OR<7,53</td>
<td>11,33</td>
</tr>
<tr>
<td>Nome do pastor</td>
<td>0,24*</td>
<td>0,48**</td>
<td>???</td>
<td>???***</td>
<td>1,33</td>
</tr>
<tr>
<td>Contratar pastor com gado</td>
<td>0,07</td>
<td>0,790</td>
<td>0,90</td>
<td>0,37<OR<2,09</td>
<td>25,33</td>
</tr>
<tr>
<td>Exigência</td>
<td>0,00</td>
<td>1,000**</td>
<td>1,50</td>
<td>0,21<OR<17,64</td>
<td>20,00</td>
</tr>
<tr>
<td>Saneamento</td>
<td>0,56*</td>
<td>0,443**</td>
<td>2,65</td>
<td>0,41<OR<29,33</td>
<td>18,00</td>
</tr>
<tr>
<td>Certificado Sanitário</td>
<td>0,07</td>
<td>0,537**</td>
<td>2,27</td>
<td>0,03<OR<185,10</td>
<td>1,33</td>
</tr>
<tr>
<td>Leva o gado</td>
<td>0,04*</td>
<td>1,000</td>
<td>???</td>
<td>???***</td>
<td>25,33</td>
</tr>
</tbody>
</table>

* Correcção de Yates ; ** Fisher; *** Valor indeterminado

Tabela n.º 69 - Factores de risco relacionados com o Pastor e ocorrência de brucelose

O facto dos animais do Pastor serem saneados em nome do proprietário da exploração, dificulta a sua identificação como Produtores.

Apesar dos Produtores, tenderem hoje a exigir o saneamento do rebanho do Pastor a contratar, a verdade é que aceitam que o saneamento desses animais, ocorra quando os seus forem saneados, e não antes de serem misturados no rebanho.
7.3.5 Cães de rebanho

O presente estudo não evidenciou associação estatística entre a presença de cães "de rebanho" e a ocorrência de brucelose ($X^2 = 3,71; p = 0,0744; 0,91<OR<9,64$)

Note-se, no entanto, que os valores calculados estão muito próximos do limiar de rejeição da hipótese nula.

A brucelose no cão está associada à Brucella canis, identificada em 1966 (Carmichael, 1990) mas desde 1906, que se conhece a susceptibilidade do cão à Brucella melitensis (Morse et al., 1953).

Todavia, o papel do cão na epidemiologia da brucelose animal não é claro. Segundo Galieri et al. (1991), quanto maior for a prevalência da brucelose nos ovinos, maior é a probabilidade de se detectar cães positivos nas explorações. No entanto, sugerem que o cão não é um reservatório importante da Brucella melitensis.

A contaminação dos cães dá-se pela ingestão de placentas, fetos abortados, borregos e chibos mortos e carcaças de animais mortos (Calisti et al., 1996). É comum ver-se o Produtor ou o Pastor abrir animais mortos, procurar uma causa de morte, e de imediato, oferecer as vísceras aos cães.

A presença do cão, entre as ovelhas ou no local de parto, garante-lhe o acesso às placentas e abortos. De tal forma, que por vezes, o Produtor nem se apercebe da presença de placentas ou abortos.

O cão desempenha, provavelmente, um papel de vector mecânico, arrastando produtos infectantes pelo prado/exploração, e mesmo entre explorações, contaminando as pastagens e animais de rebanhos vizinhos.

Para além da presença dos cães das explorações, os cães abandonados pelos caçadores, após a época de caça, organizam-se nos predadores mais activos da região, podendo desempenhar um papel similar ao dos cães "de rebanho" na epidemiologia da doença.
7.3.6 Presença de outras espécies pecuárias e de fauna silvestre na exploração

A presença de outras espécies pecuárias na exploração, nomeadamente de suínos e de bovinos, não parece contribuir para a ocorrência de brucelose nos pequenos ruminantes (Tabela n.º 70). Geralmente, estas espécies estão fisicamente isoladas dos pequenos ruminantes e o seu número não é significativo.

<table>
<thead>
<tr>
<th>Outras Espécies Domésticas</th>
<th>(\chi^2)</th>
<th>(p)</th>
<th>OR</th>
<th>IC(_{OR})</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suínos</td>
<td>3,65</td>
<td>0,056</td>
<td>1,92</td>
<td>0,92<OR<4,16</td>
<td>37,33</td>
</tr>
<tr>
<td>Bovinos</td>
<td>1,41</td>
<td>0,235</td>
<td>1,66</td>
<td>0,65<OR<4,15</td>
<td>18,67</td>
</tr>
</tbody>
</table>

Tabela n.º 70 - Presença de espécies animais domésticas e ocorrência de brucelose

O presente estudo sugere que a presença de veados, lebres e coelhos bravos nas parcelas da exploração é um factor de risco associado à ocorrência de brucelose nos pequenos ruminantes (Tabela n.º 71).

<table>
<thead>
<tr>
<th>Espécies silvestres</th>
<th>(\chi^2)</th>
<th>(p)</th>
<th>OR</th>
<th>IC(_{OR})</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Javalis</td>
<td>1,38</td>
<td>0,240</td>
<td>1,53</td>
<td>0,71<OR<3,32</td>
<td>59,33</td>
</tr>
<tr>
<td>Lebres/Coelhos Bravos</td>
<td>3,87*</td>
<td>0,031***</td>
<td>?***</td>
<td>1,18<OR< ?***</td>
<td>93,33</td>
</tr>
<tr>
<td>Veados</td>
<td>7,29</td>
<td>0,007</td>
<td>2,72</td>
<td>1,21<OR<6,08</td>
<td>28,00</td>
</tr>
<tr>
<td>Raposas</td>
<td>1,87</td>
<td>0,170</td>
<td>1,71</td>
<td>0,75<OR<4,05</td>
<td>68,67</td>
</tr>
<tr>
<td>Aves</td>
<td>2,88</td>
<td>0,090</td>
<td>2,05</td>
<td>0,84<OR<5,37</td>
<td>73,33</td>
</tr>
<tr>
<td>Zona de Caça Associativa</td>
<td>0,21</td>
<td>0,644</td>
<td>1,17</td>
<td>0,56<OR<2,46</td>
<td>51,33</td>
</tr>
</tbody>
</table>

* Correcção de Yates; ** Fisher; ***Valor indeterminado

Tabela n.º 71 - Presença de espécies silvestres e ocorrência de brucelose

O veado tem vindo a ser introduzido nos últimos anos, em Zonas de Caça Associativa, situadas sobretudo na zona sul da região, junto aos rios Tejo e Erges, nomeadamente nas freguesias de Monfortinho, Salvaterra do Extremo, Segura,
Rosmaninhal e Monforte da Beira. Nestas duas últimas, existe um número considerável de rebanhos infectados.

O papel dos veados na epidemiologia da brucelose não é bem conhecido. No entanto, a sua susceptibilidade à *Brucella sp.* é conhecida, constituindo uma provável fonte de infecção para o homem, pelo menos pelo contacto directo com o sangue (Garin-Bastuji *et al.*, 1998).

No caso dos coelhos e das lebres, não foi possível determinar o *Odds Ratio*, embora tenha sido evidenciada a associação estatística entre a presença destas espécies animais e a ocorrência de brucelose. Nos leporídeos conhece-se a sua susceptibilidade à *Brucella sp.*, sobretudo à *Brucella suis* biovar 2, tendo inclusive estado na origem de um caso de Febre de Malta, descrito em França (Teyssou *et al.*, 1989).

7.3.7 Factores associados ao comércio animal

Cerca de 50 % dos Produtores compram animais. Já discutimos que os Produtores "facilitam" nas exigências a import à transacção comercial e que as Autoridades Sanitárias Competentes não desempenhem plenamente o papel que a lei lhes confere. Além dos rebanhos funcionarem como "populações abertas", as medidas de controlo de potenciais fontes de infecção não estão enraizadas na comunidade de Produtores, fruto da desconfiança mútua, entre Produtores e Autoridade Sanitária Competente, e do baixo nível de educação sanitária dos Produtores.

Apenas um, dos potenciais factores de risco, associados à compra de animais se revelou estar associado à ocorrência de brucelose nos pequenos ruminantes (Tabela n.º 72).
<table>
<thead>
<tr>
<th>Compra de animais</th>
<th>χ²</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra de animais para substituição</td>
<td>1,63</td>
<td>0,201</td>
<td>0,64</td>
<td>0,31<OR<1,34</td>
<td>55,33</td>
</tr>
<tr>
<td>Machos</td>
<td>0,93*</td>
<td>0,314**</td>
<td>?***</td>
<td>?***</td>
<td>52,00</td>
</tr>
<tr>
<td>Fêmeas</td>
<td>3,87*</td>
<td>0,03**</td>
<td>8,14</td>
<td>1,09<OR<357,68</td>
<td>45,33</td>
</tr>
<tr>
<td>Adultos</td>
<td>2,26*</td>
<td>0,096</td>
<td>5,87</td>
<td>0,77<OR<261,75</td>
<td>46,67</td>
</tr>
<tr>
<td>Jovens</td>
<td>0,60</td>
<td>0,439</td>
<td>0,67</td>
<td>0,22<OR<2,11</td>
<td>38,00</td>
</tr>
<tr>
<td>Vizinhanos</td>
<td>0,72*</td>
<td>0,370**</td>
<td>2,18</td>
<td>0,52<OR<12,97</td>
<td>44,00</td>
</tr>
<tr>
<td>Outras regiões</td>
<td>2,99</td>
<td>0,083</td>
<td>2,37</td>
<td>0,80<OR<7,38</td>
<td>28,67</td>
</tr>
<tr>
<td>Importação</td>
<td>0,22</td>
<td>0,901</td>
<td>2,52</td>
<td>0,03<OR<201,29</td>
<td>1,33</td>
</tr>
<tr>
<td>Negociante</td>
<td>0,05*</td>
<td>1,000**</td>
<td>0,91</td>
<td>0,14<OR<4,29</td>
<td>7,33</td>
</tr>
<tr>
<td>Mercado</td>
<td>0,55*</td>
<td>1,000**</td>
<td>0,00</td>
<td>0,00<OR<95,87</td>
<td>0,67</td>
</tr>
<tr>
<td>Feira</td>
<td>0,23*</td>
<td>1,000**</td>
<td>1,24</td>
<td>0,02<OR<24,83</td>
<td>2,00</td>
</tr>
<tr>
<td>Já comprou um rebanho inteiro</td>
<td>1,54</td>
<td>0,21</td>
<td>1,75</td>
<td>0,64<OR<5,72</td>
<td>18,67</td>
</tr>
<tr>
<td>Faz quarentena</td>
<td>1,34*</td>
<td>0,246</td>
<td>2,48</td>
<td>0,59<OR<9,83</td>
<td>8,67</td>
</tr>
<tr>
<td>Exige colheita de sangue antes da compra</td>
<td>2,77</td>
<td>0,096</td>
<td>2,27</td>
<td>0,77<OR<6,84</td>
<td>26,67</td>
</tr>
<tr>
<td>Na sua exploração</td>
<td>1,60</td>
<td>0,045</td>
<td>3,86</td>
<td>0,83<OR<18,50</td>
<td>16,67</td>
</tr>
<tr>
<td>Na Origem</td>
<td>4,00</td>
<td>0,205</td>
<td>0,34</td>
<td>0,07<OR<1,58</td>
<td>10,67</td>
</tr>
<tr>
<td>Exige saber quando foi saneado</td>
<td>1,62</td>
<td>0,203</td>
<td>1,93</td>
<td>0,60<OR<5,96</td>
<td>15,33</td>
</tr>
<tr>
<td>Certificado</td>
<td>0,14</td>
<td>0,71</td>
<td>1,20</td>
<td>0,40<OR<3,50</td>
<td>21,33</td>
</tr>
<tr>
<td>Guia de trânsito</td>
<td>2,53</td>
<td>0,112</td>
<td>2,21</td>
<td>0,75<OR<6,90</td>
<td>29,33</td>
</tr>
<tr>
<td>Conhecimento à OPP</td>
<td>0,00*</td>
<td>0,737</td>
<td>1,27</td>
<td>0,25<OR<5,42</td>
<td>8,00</td>
</tr>
<tr>
<td>Apoio do Médico Veterinário</td>
<td>1,99</td>
<td>0,158</td>
<td>1,99</td>
<td>0,68<OR<5,82</td>
<td>23,33</td>
</tr>
<tr>
<td>Classificação sanitária</td>
<td>3,76</td>
<td>0,0526</td>
<td>2,69</td>
<td>0,89<OR<8,77</td>
<td>30,00</td>
</tr>
<tr>
<td>Não exige nada</td>
<td>1,35</td>
<td>0,245**</td>
<td>0,42</td>
<td>0,09<OR<1,53</td>
<td>15,33</td>
</tr>
<tr>
<td>Tem registos de entrada e saída de animais</td>
<td>0,02*</td>
<td>0,686**</td>
<td>1,53</td>
<td>0,21<OR<9,43</td>
<td>4,67</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher; *** Valor indeterminado

Tabela n.º 72 - Factores relacionados com a compra de animais e a ocorrência de brucelose
A venda de jovens reprodutores, sobretudo de fêmeas, constitui uma fonte potencial de introdução da *Brucella melitensis* em rebanhos indemnes mas só colocam em risco a exploração de destino, caso o movimento animal nessas explorações seja muito elevado e desregulado. As variáveis analisadas no presente estudo, não confirmaram a venda de animais como factor de risco da ocorrência de brucelose nos rebanhos (Tabela n.º 73).

<table>
<thead>
<tr>
<th>Venda de animais</th>
<th>(\chi^2)</th>
<th>P</th>
<th>OR</th>
<th>IC(_{OR})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vende de animais</td>
<td>1,19</td>
<td>0,274</td>
<td>0,62</td>
<td>0,24<OR<1,54</td>
<td>23,33</td>
</tr>
<tr>
<td>Fêmeas gestantes ou com borrego</td>
<td>0,02*</td>
<td>1,000**</td>
<td>0,80</td>
<td>0,11<OR<4,90</td>
<td>10,00</td>
</tr>
<tr>
<td>Fêmeas que abortaram</td>
<td>0,08*</td>
<td>1,000**</td>
<td>1,09</td>
<td>0,17<OR<6,45</td>
<td>1,33</td>
</tr>
<tr>
<td>Animais não saneados</td>
<td>2,70*</td>
<td>0,06**</td>
<td>?</td>
<td>?</td>
<td>16,67</td>
</tr>
<tr>
<td>Saneados à mais de 6 meses</td>
<td>0,63*</td>
<td>0,393**</td>
<td>0,38</td>
<td>0,06<OR<2,60</td>
<td>4,67</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher

Tabela n.º 73 - Venda de animais e ocorrência de brucelose

7.2.8 Casos de brucelose nos rebanhos

A presença de machos seropositivos sugere que o seu papel na epidemiologia da doença pode ser mais importante do que o referido anteriormente (Tabela n.º 74).

No entanto, a *Brucella melitensis* nunca foi isolada em machos da região. Por outro lado, a eventualidade de poderem coexistir nos rebanhos, machos infectados com *Brucella ovis* deve ser investigada, como já referimos.

78% dos Produtores com rebanhos infectados, sabem que não podem comprar nem vender animais porque a sua exploração está sob sequestro.

66% dos Produtores com rebanhos infectados conhece a sua classificação sanitária.

Inesperadamente, 45% dos proprietários não sabe que as explorações sob sequestro não podem comprar nem vender animais, e mais surpreendente ainda, 47% desconhece a classificação sanitária do seu rebanho.
Constata-se, que é necessário a um Produtor que o seu rebanho seja infectado para se aperceber das consequências inerentes a esse estatuto. Por outro lado, é preocupante que uma proporção muito considerável de Produtores com rebanhos infectados desconheça as condicionantes do sequestro e a sua classificação sanitária. Destes Produtores, 10% não sabe sequer o que é o sequestro. Este cenário sugere que a imposição do sequestro não está a ser feita de forma pedagógica, de maneira a que o Produtor entenda os deveres a que se obriga.

<table>
<thead>
<tr>
<th>Brucelose no rebanho</th>
<th>(\chi^2)</th>
<th>(p)</th>
<th>OR</th>
<th>IC(_{95%})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saneia todos os anos</td>
<td>1,20*</td>
<td>0,272**</td>
<td>4,26</td>
<td>0,54<OR<192,86</td>
<td>94,00</td>
</tr>
<tr>
<td>Já teve brucelose</td>
<td>48,91*</td>
<td>0,000</td>
<td>?***</td>
<td>?***</td>
<td>59,33</td>
</tr>
<tr>
<td>Machos com brucelose</td>
<td>17,97*</td>
<td>0,000</td>
<td>11,14</td>
<td>3,19<OR<48,26</td>
<td>21,33</td>
</tr>
<tr>
<td>Colheita na exploração</td>
<td>0,20*</td>
<td>0,664**</td>
<td>2,58</td>
<td>0,28<OR<124,43</td>
<td>96,67</td>
</tr>
<tr>
<td>Edital</td>
<td>1,27*</td>
<td>0,169**</td>
<td>0,00</td>
<td>0,00<OR<2,16</td>
<td>3,33</td>
</tr>
<tr>
<td>Não separa os positivos</td>
<td>0,67</td>
<td>0,413</td>
<td>1,33</td>
<td>0,63<OR<2,85</td>
<td>57,33</td>
</tr>
<tr>
<td>Não separa as fêmeas prenhes</td>
<td>0,13</td>
<td>0,721</td>
<td>1,14</td>
<td>0,53<OR<2,46</td>
<td>62,00</td>
</tr>
<tr>
<td>Não abate antes do parto</td>
<td>0,66</td>
<td>0,416</td>
<td>1,33</td>
<td>0,63<OR<2,82</td>
<td>55,33</td>
</tr>
<tr>
<td>Sequestro (Pode comprar ou vender animais)</td>
<td>12,96</td>
<td>0,0002</td>
<td>0,26</td>
<td>0,11<OR<0,58</td>
<td>44,67</td>
</tr>
<tr>
<td>Sabe a classificação sanitária</td>
<td>5,35</td>
<td>0,020</td>
<td>2,28</td>
<td>1,07<OR<4,94</td>
<td>51,33</td>
</tr>
</tbody>
</table>

* Correção de Yates; ** Fisher; *** Valor indeterminado

Tabela n.º 74 - Conhecimento das medidas de controlo de focos de brucelose e ocorrência da doença no rebanho

7.2.9 Febre de Malta

Os resultados obtidos, reflectem a maior sensibilização dos Produtores com rebanhos infectados, para a infecção humana, particularmente para os riscos inerentes ao consumo de queijo fresco (Tabela n.º 75).

O consumo de queijo fresco produzido com leite cru, tem sido considerado uma das principais fontes de risco de brucelose humana, constituindo um Risco Relativo de 5.81 (Hadjichristodoulus et al., 1999) e um OR de 5,46, quando
comparado com o consumo de queijo curado (Gómez Aragón et al., 1997). Face ao hábito de consumo de queijo mal curado e aos tempos de cura a que os queijos da Beira Baixa são submetidos, esta potencial fonte de contágio não deve ser menosprezada, sobretudo porque o risco de ocorrência de casos de Febre de Malta entre os produtores com rebanhos infectados é efectivo (OR = 8,07).

<table>
<thead>
<tr>
<th>Brucelose humana</th>
<th>(\chi^2)</th>
<th>p</th>
<th>OR</th>
<th>IC<sub>OR</sub></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bebe leite fresco</td>
<td>0,48*</td>
<td>0,321**</td>
<td>0,52</td>
<td>0,09<OR<2,09</td>
<td>9,33</td>
</tr>
<tr>
<td>Come queijo fresco</td>
<td>6,24</td>
<td>0,012</td>
<td>0,39</td>
<td>0,16<OR<0,87</td>
<td>38,00</td>
</tr>
<tr>
<td>Queijo fresco de outra exploração</td>
<td>0,81*</td>
<td>0,369</td>
<td>0,54</td>
<td>0,15<OR<1,67</td>
<td>14,67</td>
</tr>
<tr>
<td>Vende queijo fresco</td>
<td>4,69</td>
<td>0,030</td>
<td>0,33</td>
<td>0,09<OR<0,98</td>
<td>20,00</td>
</tr>
<tr>
<td>Vende queijo mal curado</td>
<td>9,98</td>
<td>0,001</td>
<td>0,12</td>
<td>0,15<OR<0,70</td>
<td>58,00</td>
</tr>
<tr>
<td>Brucelose humana</td>
<td>20,13</td>
<td>0,000</td>
<td>8,07</td>
<td>2,71<OR<26,75</td>
<td>15,33</td>
</tr>
</tbody>
</table>

* Correcção de Yates; ** Fisher

Tabela n.º 75 - Febre de Malta e ocorrência de brucelose animal

Para além do contacto com materiais do parto ou do aborto, deve também considerar-se a transmissão da *Brucella melitensis* ao Homem, através do contacto directo com o cão, com carcaças de pequenos ruminantes (autoconsumo) e de suino (matança do porco) e com espécies cinegéticas (caça). Importa investigar em detalhe o papel destas espécies animais na epidemiologia da Febre de Malta.

7.2.10 Análise de combinação de factores

7.2.10.1 Correlação de Pearson

Para melhorar, o nível de compreensão sobre a génesis dos focos de brucelose nos rebanhos de pequenos ruminantes, da área de intervenção da OPP – Ovibeira, os factores de risco identificados em 7.3.1 a 7.3.9., foram analisados recorrendo a estatísticas de correlação e de regressão logística (Anexo IV).
Listagem dos factores:

- Ocorrência de aborto (ABORTOS);
- Área Total da exploração (AREATOTAL – Limite: 30 hectares);
- Existência de bardos na exploração (BARDOS);
- Ocorrência de partos nos bardos (BARDO);
- Presença de cães de rebanho (CAES01);
- Acesso dos cães às placenta das ovelhas paridas (CAES02);
- Número de carneiros reprodutores na exploração (CARNEIRO – Limite: 2 animais);
- Entrada na exploração de animais de rebanhos vizinhos (ENTRADADE);
- Compra de fêmeas adultas (FEMEAS);
- Ocorrência de partos no mês de Março (MR);
- Ocorrência de partos no mês de Outubro (OUT);
- Ocorrência de partos no mês de Dezembro (DEZ)
- Ocorrência de nado-mortos (NADOMORTO);
- Número de pastores na exploração (NUMERODEP);
- Número de ovelhas na exploração (OVELHAS – Limite: 57 animais);
- Ocorrência de partos nas pastagens (PASTO);
- Separação das fêmeas na altura do parto (SEPARAASF);
- Conhecimento da Classificação Sanitária (SABEASUAC);
- Conhecimento sobre a legalidade de compra e venda de animais, no caso de um rebanho em sequestro (SEQUESTROP);
- Camas de terra (TERRA);
- Presença de Veados na área da exploração (VEADOS);

Não considerámos a compra de animais integrada na compra de novos terrenos, devido ao pequeno número de Produtores que o fizeram. Igualmente, não considerámos Machos reagentes, por as respostas provirem, praticamente, dos Produtores com rebanhos infectados e serem em pequeno número.

A correlação de Pearson identificou vários pares de variáveis com grau de correlação evidente (Tabela n.º 76 e 77 - Anexo IV).
A correlação obtida entre as variáveis Ovelhas, Carneiros e Área Total, traduz o facto de que as explorações de maior dimensão têm um número maior de ovelhas e naturalmente, um número maior de carneiros. Da mesma forma, o número de pastores depende da dimensão da exploração e do número de ovelhas. A Área Total (coeficiente $\beta = 1,32914$, alteração absoluta do coeficiente $\beta = 0,84$, alteração relativa de 36 %, $G>Pr \chi^2$), o Número de Pastores (coeficiente $\beta = 0,98$, alteração absoluta do coeficiente $\beta = 0,47$, alteração relativa de 27 %, $G>Pr \chi^2$), revelaram-se como factores de confusão, quando analisados em relação ao factor Ovelhas, o que não se verificou em relação aos Carneiros (coeficiente $\beta= 1,53$, alteração absoluta do coeficiente $\beta = 0,75$, alteração relativa de 51 %, $G<Pr \chi^2$). No entanto, face à forte correlação existente entre estas duas variáveis, optou-se pela não introdução da variável Carneiros no modelo final.

A correlação obtida entre os factores Bardo e Bardo, representa a importância dos bardos como locais de parto. No entanto, a pesquisa de factores de confusão não foi conclusivo (coeficiente de $\beta = 1,11088$, uma diferença absoluta $= 0,31$ e uma diferença relativa $= 28,8 \%$, $G<Pr \chi^2$). Neste caso, tendo em conta que os bardos são utilizados diariamente pelos produtores com objectivos que não exclusivamente os partos, passando os animais largas horas no seu interior, optámos pela entrada de ambos factores na análise final.

No que se refere à Separação das Fêmeas na altura do parto, revelou uma correlação positiva moderada com a variável Ovelhas, mas não foi definida a existência de um factor de confusão (coeficiente de $\beta = 0,84730$, uma diferença absoluta $= 0,44$ e uma diferença relativa $= 52 \%$, $G>Pr \chi^2$). O nível de correlação observado entre o separar as fêmeas na altura do parto, o número de pastores e área total da exploração, resulta do facto de em rebanhos maiores, em termos de maneio, ser normal a divisão em 2 rebanhos: um onde se incluem as fêmeas secas e outro com as ovelhas de alavão. Este facto, só por si, pode justificar a presença de mais pastores.

As variáveis, Abortos e Nado-mortos, apresentaram uma correlação positiva moderada, e a variável Nado-morto revelou-se como um factor de confusão (coeficiente de $\beta = 1,15268$, uma diferença absoluta $= 0,68$ e uma diferença relativa $= 41 \%$, $G>Pr \chi^2$). Esta correlação entre estes dois factores era esperada,
uma vez que nos casos de infecção uterina por *Brucella*, se não ocorrer o aborto, os fetos podem morrer antes do nascimento, ou morrerem poucas horas depois do seu nascimento.

Em relação às variáveis relacionadas com o Sequestro e Conhecimento da Classificação Sanitária, a sua correlação demostra que os produtores com rebanhos infectados conhecem melhor as suas classificações sanitárias e sabem que a compra e venda de animais não é permitida por lei, uma vez que já foram submetidos ao sequestro. No entanto, apesar deste conhecimento, face aos resultados obtidos, muitos são os que não cumprem as regras do sequestro. Ambas as variáveis não foram introduzidas no modelo final de análise.

A variável Veados também não foi incluída na análise regressão, tendo em conta que em termos biológicos se torna difícil explicar a sua relação com a brucelose nos pequenos ruminantes, face aos elementos disponíveis.

7.2.10.2 Regressão multivariável (Backward Stepwise: Wald)

As variáveis submetidas à análise de regressão multivariável pelo método de eliminação de factores, foram as seguintes:

- Ocorrência de aborto (ABORTOS);
- Existência de bardos na exploração (BARDOS);
- Ocorrência de partos nos bardos (BARDO);
- Entrada na exploração de animais de rebanhos vizinhos (ENTRADADE);
- Compra de fêmeas (FEMEAS);
- Ocorrência de partos no mês de Março (MR);
- Ocorrência de partos no mês de Outubro (OUT);
- Ocorrência de partos no mês de Dezembro (DEZ);
- Número de ovelhas na exploração (OVELHAS);
- Ocorrência de partos nas pastagens (PASTO);
- Separação das fêmeas na altura do parto (SEPARAASF);
- Camas de terra (TERRA);
- Acesso dos cães às placentas das ovelhas paridas (CAES02);

O primeiro factor a ser eliminado pela análise de regressão multivariável foi a Entrada de Animais de explorações vizinhas. Segui-se-lhe (Anexo IV):

- Existência de bardos na exploração (BARDOS);
- Número de ovelhas na exploração (OVELHAS);
- Ocorrência de aborto (ABORTOS);
- Ocorrência de partos nas pastagens (PASTO);
- Ocorrência de partos nos bardos (BARDO);
- Ocorrência de partos no mês de Dezembro (DEZ)
- Ocorrência de partos no mês de Outubro (OUT);
- Terra.

No modelo final foram apenas considerados 4 factores: o mês de Março, a Separação das Fêmeas na altura do parto, o acesso dos Cães às placentas e a Compra de Fêmeas (Tabela n.º 78):

<table>
<thead>
<tr>
<th>Factores de Risco</th>
<th>p</th>
<th>OR</th>
<th>ICOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Março</td>
<td>0,056</td>
<td>2,898</td>
<td>0,971<OR<10,001</td>
</tr>
<tr>
<td>Separa as fêmeas no parto</td>
<td>0,029</td>
<td>5,089</td>
<td>1,158<OR<16,333</td>
</tr>
<tr>
<td>Cães</td>
<td>0,038</td>
<td>4,002</td>
<td>1,075<OR<13,241</td>
</tr>
<tr>
<td>Compra fêmeas</td>
<td>0,082</td>
<td>10,43</td>
<td>0,779<OR<68,441</td>
</tr>
</tbody>
</table>

Tabela n.º 78 - Factores de risco incluídos no modelo final

Os valores de p e dos intervalos de confiança apresentados, tornam difícil a interpretação dos factores relacionados com o mês de Março e a Compra de Fêmeas. No entanto, o teste Hosmer e Lemeshow ($\chi^2 = 1,750$, $p = 0,972$) confirma que o modelo se comporta perfeitamente (Anexo IV) (Hosmer e Lemeshow, 2000).
A presença dos factores de risco incluídos no modelo final, induz uma probabilidade máxima de 0,7 de ocorrência de brucelose na exploração (Tabela n.º 79).

<table>
<thead>
<tr>
<th>Factores de risco presentes na exploração</th>
<th>Probabilidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nenhum factor presente</td>
<td>0,0069</td>
</tr>
<tr>
<td>Março</td>
<td>0,0211</td>
</tr>
<tr>
<td>Cães</td>
<td>0,0255</td>
</tr>
<tr>
<td>Separa as fêmeas</td>
<td>0,0293</td>
</tr>
<tr>
<td>Compra fêmeas</td>
<td>0,0482</td>
</tr>
<tr>
<td>Março Cães</td>
<td>0,0754</td>
</tr>
<tr>
<td>Março Separa as fêmeas</td>
<td>0,0859</td>
</tr>
<tr>
<td>Separa as fêmeas Cães</td>
<td>0,1021</td>
</tr>
<tr>
<td>Março Compra fêmeas</td>
<td>0,1362</td>
</tr>
<tr>
<td>Cães Compra fêmeas</td>
<td>0,1603</td>
</tr>
<tr>
<td>Separa as fêmeas Compra fêmeas</td>
<td>0,1803</td>
</tr>
<tr>
<td>Março Separa as fêmeas Cães</td>
<td>0,2617</td>
</tr>
<tr>
<td>Março Cães Compra fêmeas</td>
<td>0,3731</td>
</tr>
<tr>
<td>Março Separa as fêmeas Compra fêmeas</td>
<td>0,4069</td>
</tr>
<tr>
<td>Separa as fêmeas Cães Compra fêmeas</td>
<td>0,4536</td>
</tr>
<tr>
<td>Março Separa as fêmeas Cães Compra fêmeas</td>
<td>0,7213</td>
</tr>
</tbody>
</table>

Tabela n.º 79 – Probabilidade de ocorrência de brucelose nas explorações

O modelo estatístico final, permite concluir que existem dois aspectos relevantes na epidemiologia da brucelose nos pequenos ruminantes da região em estudo:

- a compra de animais.
- o maneio do parto.

O actual cenário é, portanto, o de explorações que ainda não reúnem bons níveis de biosegurança mas que devido aos actuais critérios de classificação sanitária de rebanho já atingiram a categoria de indenme (B3). São, contudo, bastante vulneráveis à entrada da *Brucella melitensis* e de outros agentes transmissíveis, o que se reflecte posteriormente, na dificuldade em manter o estatuto sanitário de B3 ao longo do tempo, e na dificuldade em regressar a esse estatuto sanitário, após infeccão ou re-infeccção ("rebanhos-problema").

Este cenário tenderá a persistir no tempo e no espaço, caso não sejam tomadas um conjunto alargado de medidas, quer pelo Produtor quer pela Autoridade Sanitária Competente, das quais destacamos:
- Melhoria da qualidade dos dados recolhidos;
- Criação de uma base de dados de apoio ao comércio de animais;
- Criação de um registo de Pastores;
- Registo histórico obrigatório de todos os resultados das provas serológicas de cada rebanho/animal;
- Alteração do sistema de identificação dos animais, dos rebanhos e dos proprietários;
- Identificação e controlo dos rebanhos não saneados;
- Identificação dos Produtores que cessem a actividade;
- Maior controlo sobre a atribuição das classificações sanitárias, reforçando a credibilidade do estatuto sanitário de cada rebanho;
- Educação Sanitária dos Produtores, responsabilizando o Médico Veterinário Assistente;
- Saneamento dos animais a comprar – estabelecimento de critérios a respeitar, que defendam os rebanhos indemnizes.

Urze também desenvolver testes serológicos com melhores características intrínsecas que as reveladas pelos testes do R.B e da F.C. em soros de pequenos ruminantes. A implementação de exames bacteriológicos, que se verifica em apenas alguns rebanhos, poderá diminuir os erros de decisão de compra. No entanto, deve considerar-se a possibilidade de substituir os testes serológicos de rotina, por colheitas de amostras nos matadouros e de leite nas explorações, para exame bacteriológico.

Por outro lado, é necessário isolar e identificar microrganismos antigenicamente semelhantes à Brucella sp., calcular a sua prevalência e distribuição na população. Os outros factores de risco, incluídos no modelo final, estão associados a práticas de maneio, o que co-responsabiliza os Médicos Veterinários Assistentes das explorações, apontando para a implementação gradual de medidas que minimizem ou eliminem o risco que representa a presença desses factores.

A separação das fêmeas na altura do parto é feita por grupos, medida que dificilmente pode ser alterada, pois é impossível dispor de um local de parto para cada fêmea. Além do que referimos, relativamente ao momento ideal para realizar
as colheitas de sangue, devem reforçar-se as medidas de higienização, de desinfecção e de rotação dos locais de parto.

O acesso dos cães às placentas é um indicador indirecto, da eficiência das medidas preventivas na época de partos.

O mês de Março, é um mês em que ocorrem partos com grande frequência nas explorações. Na região, está geralmente associado a um frio que oferece à *Brucella melitensis* condições de sobrevivência excelentes, aumentando a probabilidade das jovens fêmeas do rebanho contactarem com doses infectantes da bactéria.

O envolvimento dos Médicos Veterinários Assistentes das explorações terá de ser mais activo, porque na maioria dos casos, têm a consideração e a confiança do Produtor. A alteração de práticas tradicionais de maneio, só acontecerá quando os Médicos Veterinários conseguirem justificar essa mudança, calculando o impacto económico da doença no rebanho, demonstrando as mais-valias associadas a nichos de mercado, alertando para aumentos de competitividade capazes de assegurar o futuro da exploração, etc.

Dificilmente, o Programa de Controlo e de Erradicação da Brucelose nos Pequenos Ruminantes, terá sucesso se estiver apenas alicerçado no controlo serológico dos rebanhos, sem que se integrem medidas preventivas que controlem a disseminação da brucelose intra-rebanhos e inter-rebanhos.
Capítulo 8

DISCUSSÃO FINAL

Em 1986, ano da adesão de Portugal à Comunidade Económica Europeia, o País conseguiu aprovar vários dossiers no seio da Comunidade, dotados de verbas avultadas, que visavam a erradicação da brucelose nos pequenos ruminantes. Em simultâneo, e posteriormente, toda uma panóplia de legislação foi sendo aprovada, de forma a enquadrar as medidas e as acções em curso.
Mais de uma década depois, apesar do esforço humano e financeiro, investido na erradicação da brucelose, os resultados obtidos não correspondem às expectativas iniciais: A brucelose não foi erradicada das populações de pequenos ruminantes e continua a ser um dos mais sérios problemas de Saúde Pública em Portugal.
No distrito de Castelo Branco, os casos de Febre de Malta notificados, representam 6-8% do total nacional, e 17-21% dos notificados na Região Centro (Gráfico n.º 1). Em 2000, a taxa de incidência foi de 3,76 novos casos por 100.000 habitantes no distrito de Castelo Branco; a nível nacional, a taxa de incidência foi de 5,02 casos por 100.000 habitantes (D.G.S., 2001).
Nos concelhos de Castelo Branco e de Idanha-a-Nova, de um total de 21 casos de Febre de Malta investigados, em ≈20%, a fonte de infecção identificada foi o consumo de queijo fresco; os restantes foram atribuídos a contacto directo com animais. Destes, aproximadamente 50% resultou do contacto com ovinos.
À escala local, refira-se que o investimento da O.P.P. da Ovibeira no actual Programa de Erradicação da Brucelose nos Ruminantes, é cerca de 70.000 contos/ano.
Constata-se que as estratégias foram sendo modificadas, e por vezes implementadas durante períodos cuja duração não permitiu nem a sua efectiva aplicação "no terreno", nem a sua avaliação. O elemento nuclear deste falhanço, terá sido a qualidade da informação gerada pelos diversos intervenientes no programa de erradicação. De facto, é crucial melhorar a qualidade e a diversidade dos dados recolhidos, a qualidade e o “timing” do seu processamento, e assegurar o “feed-back” da informação, a todos os intervenientes, desde o Produtor ao Delegado de Saúde local, por forma a motivar todos os envolvidos na execução das medidas de controlo e de vigilância.
O programa informático P.I.S.A., que gere os dados do programa de controlo e de erradicação da brucelose, tem-se revelado pouco flexível, e parte da informação não chega a ser produzida porque existem dados que não podem ser registados. Por outro lado, a compatibilidade do P.I.S.A. com outras aplicações informáticas é limitada, restringindo, por exemplo, a importação/exportação de dados para "cruzamento" de informação.
Por ter sido concebido para armazenar e processar dados à escala Nacional, tem ainda a desvantagem de não considerar especificidade regionais ou das áreas abrangidas pelas várias O.P.P., e qualquer alteração, só poder ser realizada após uma sequência de procedimentos administrativos, incompatíveis com a necessidade de adaptação do programa à dinâmica da brucelose nas populações de pequenos ruminantes.
O fluxo de informação também é criticado pelos intervenientes no programa. Os Serviços Oficiais, produtores de informação, mas para tal, dependentes de dados recolhidos por diferentes parceiros, deveriam assegurar o acesso permanente e a baixo custo à informação, salvaguardando a confidencialidade quando fosse necessário, através do estabelecimento de diferentes níveis de acesso às bases de dados.
Por exemplo, entre a informação que não chega à O.P.P., destacamos os resultados obtidos nos vários testes serológicos por animal e por rebanho, a data
de marcação dos animais reagentes, a data de abate dos animais reagentes, o total de animais marcados e abatidos, e eventuais circunstâncias que possam ter surgido na marcação ou no abate destes animais.

A comunicação dos resultados serológicos, por animal e por rebanho, é importante, não só para a gestão dos abates e para a definição do estatuto sanitário do rebanho, mas também para a determinação do perfil serológico de cada rebanho, crucial para as tomadas de decisão relativamente à compra e venda de animais.

O controlo da brucelose, como de qualquer outra doença transmissível, baseia-se no conhecimento de quem é que tem animais, em qualquer momento, isto é, de quem é Produtor. Neste aspecto, a informação a recolher necessita de ser ajustada. A cada Produtor, são atribuídos vários números, quase um por cada serviço do Ministério da Agricultura. Não existe em Portugal, como noutros Países da União Europeia, uma declaração anual dos Produtores que permita identificá-los, determinar o local e a área da sua exploração, o tipo de produção, e elementos adicionais à sua identificação/caracterização. A cada Produtor, deveria ser atribuído apenas um número, que usaria em qualquer candidatura ou outro tipo de acção, no âmbito do Ministério de Agricultura. Qualquer serviço que detectasse, por exemplo, a cessação da actividade ou qualquer outra alteração num determinado Produtor, poderia de imediato informar os outros serviços e actuar em conformidade. Num sistema informativo ideal, servido por bases de dados relacionais, ligadas entre si por “modem”, essa informação aconteceria em segundos, electronicamente, e simultaneamente em todos os serviços.

Neste contexto, as folhas de campo deveriam registar sempre, por exemplo, o número de contribuinte como forma de diferenciar os Produtores. Na primeira visita à exploração deveria, também, ser efectuado um diagrama da exploração que localizasse as parcelas da exploração; visitas posteriores, registariam as alterações ocorridas. Este diagrama, pode ser concebido, a partir do sistema de identificação de parcelas realizado pelo I.N.G.A..

Por outro lado, a identificação deve incidir sobre o rebanho e não sobre o animal. Os brincos a utilizar, deveriam conter o número atribuído ao Produtor e o número de série, que seria sequencial em todos os rebanhos, ou seja, a numeração
começaria em 1. Brincos transitórios, deveriam ser criados para animais em trânsito, de forma a garantir a sua identificação, no caso de se detectar infecção no rebanho de origem. Todos os animais nestas condições, com pelo menos dois testes negativos, e com uma época de reprodução no meio, poderiam permanecer no rebanho; os outros animais, deveriam ser abatidos, e o rebanho re-testado.

A identificação sequencial dos animais facilitaria quer a sua identificação no seio do rebanho quer a detecção da falta de animais.

Os erros de transposição da numeração para a base de dados, seriam minimizados se no número de identificação de cada animal, à semelhança do que já acontece nos bovinos, se incluísse um dígito de controlo para detecção de erros.

A implementação de um Sistema de Informação Geográfica (S.I.G.) seria uma contribuição valiosa para a eficácia do programa de erradicação. Além de permitir uma visualização rápida da ocorrência da doença em áreas geográficas da dimensão pretendida, permite analisar a informação, por exemplo, à escala de uma parcela de terreno. Pode-se delimitar as explorações, digitalizar barreiras físicas, identificar os rebanhos que ocupam as parcelas envolventes e a sua classificação sanitária, a partilha de pastos, os caminhos comuns, definir rotas de movimento dos rebanhos, etc. É ainda possível, identificar rapidamente os rebanhos existentes numa determinada área, por exemplo, em redor de uma exploração infectada.

Todavia, é necessário constituir equipas multidisciplinares, considerando as competências necessárias e o volume de dados a processar e a analisar, e inevitavelmente, o potencial dos mapas temáticos será tanto maior quanto melhor for a qualidade da informação disponível.

Finalmente, além de ser um auxiliar precioso para o controlo e a erradicação da brucelose, a utilidade de um S.I.G., expande-se a todas as outras afecções com impacto na Saúde Pública Veterinária e/ou na rentabilidade das explorações pecuárias. Num País com limitações financeiras e técnicas, e face à persistência de um leque alargado de problemas de Saúde Pública e de Saúde Animal nas populações animais, integrar um S.I.G. no conjunto de "ferramentas" disponíveis para o controlo e a erradicação dessas afecções, potencializará os recursos humanos e financeiros.
Infelizmente, os pacotes de “software” de S.I.G. nem sempre dispõem de menus para análise estatística espacial que se adaptem a estudos epidemiológicos, o que limita a sua utilização. No entanto, é possível criar rotinas computacionais de análise estatística que podem ser integradas nesses programas.

No que se refere à análise de resultados, é prioritário discutir e implementar, metodologias idênticas de cálculo de medidas de ocorrência de doença, nomeadamente de prevalência e de incidência. Essas metodologias devem minimizar os erros que contribuem para sobrestimar ou subestimar esses indicadores, de forma a minimizar a possibilidade de serem tomadas decisões desajustadas da realidade.

Na região-alvo deste estudo, a prevalência e a incidência estão sobrestimadas, conduzindo a algumas opiniões, favoráveis à introdução de estratégias de vacinação, cuja eficácia é questionável nas incidências registadas e à falta de rigor na execução e na verificação da identificação animal. Além disso, a aplicação da vacina impediria a curto prazo (3 anos) a obtenção do estatuto de oficialmente indemne para a região.

Os baixos valores dos coeficientes de correlação intra-rebanho, demonstram que a brucelose é endémica na região mas a prevalência baixa, reflexo de a doença estar acantonada num número reduzido de explorações. Este cenário epidemiológico, reforça a necessidade de o protocolo de testagem e de interpretação de resultados serológicos ser adaptado à ocorrência de brucelose na região.

A legislação e as normas de aplicação dos testes serológicas respeitam, em grande medida, as considerações feitas anteriormente, sobre a aplicação e a interpretação das provas serológicas. Contudo, em termos operacionais, verifica-se que leis e normas nem sempre são cumpridas, sendo substituídas por critérios que denotam, além do incumprimento legal, a falta de rigor sobre o controlo e a análise da informação. Como resultado, o sistema de classificação sanitária infere da fragilidades, inerentes à falta de rigor no estabelecimento das normas de classificação sanitária, e a sua eficiência está comprometida. Consequentemente, verifica-se que parte dos rebanhos obtiveram a classificação de infectados, após terem apresentado um número reduzido de reagentes sem evidência epidemiológica da presença de doença, e com uma probabilidade elevada, de se
tratar de resultados “falso-positivos” nos testes serológicos. Ao invés, também há casos de rebanhos que tardam em ser classificados como infectados, apesar dos resultados serológicos e da existência de evidência epidemiológica da presença de brucelose.

O Rosa Bengala e a Fixação do Complemento exibem um histórico de eficácia em programas de luta contra a brucelose bovina. Porém, nos pequenos ruminantes não existe consenso relativamente aos valores de sensibilidade e de especificidade destas provas, face à variabilidade dos resultados publicados. Deste modo, a utilização e a interpretação de resultados do Rosa Bengala e da Fixação do Complemento nos pequenos ruminantes deverá ser mais prudente, e sobretudo alicerçada em dados epidemiológicos e produtivos.

Outras provas serológicas têm sido objecto de investigação pela comunidade científica mas, até ao momento, as Autoridades Sanitárias Competentes não as introduziram no programa de erradicação. Entre outras, o E.L.I.S.A. parece constituir uma boa alternativa (Alton, 1990; Blasco et al., 1994b; Biancifiori et al., 1996).

A incorporação de mais um teste serológico ou a substituição dos testes clássicos, poderá melhorar o diagnóstico, mas a decisão final continuará a basear-se em probabilidades e no bom senso. A eventual introdução de novos testes serológicos, deverá respeitar igualmente a qualificação sanitária dos rebanhos, pelo que a interpretação dos resultados deverá passar pela especificidade do teste de rebanho e do valor predito negativo do resultado do teste de rebanho. Considerando os valores de especificidade publicados por diferentes Autores (Blasco et al., 1994a; Mikolon et al., 1998) as provas clássicas - Rosa Bengala e Fixação do Complemento - possuem valores de especificidade muito próximos de 100%.

As colheitas de sangue para exames serológicos por amostragem poderão ser introduzidas, mas considerando os actuais níveis de eficácia do sistema informativo, parece-nos contraproducente. Julgamos que não se deve optar por estratégias baseadas em amostragens sem que o estatuto sanitário de indemnize esteja consolidado no rebanho e sem que uma rede de vigilância activa da brucelose esteja a operar.
O recurso à bacteriologia tem sido implementado em vários países. Nos rebanhos indemnes, a colheita de material para exame bacteriológico nos animais reagentes reforça o diagnóstico da doença. Alguns países, substituíram os exames serológicos por exames bacteriológicos em material recolhido nos matadouros, o que exige uma identificação correcta e inequívoca dos rebanhos. Estas colheitas são realizadas por amostragem e complementadas (ou não) pela colheita de amostras de sangue antes do abate. Os rebanhos que não foram sujeitos a exames bacteriológicos ou que têm um número de exames bacteriológicos considerados como insuficiente, são submetidos a um saneamento à totalidade dos animais do rebanho ou a uma amostra representativa.

A colheita de amostras de leite para exame bacteriológico está condicionada pela eliminação da *Brucella* sp. no leite. A eliminação desta bactéria, parece ser mais importante no início da lactação, altura em que as fêmeas não são ordenhadas por estarem a amamentar os borregos. No entanto, a pesquisa de *Brucella* sp. no leite constitui uma fonte de informação complementar sobre a presença/circulação da bactéria em rebanhos classificados como indemnes.

Face ao risco que o queijo pode constituir para a Saúde Pública, as colheitas de leite e o isolamento de *Brucella* sp., pode ser atribuída às queijarias como acontece nas unidades industriais que laboram leite de vaca. Como a capacidade financeira das queijarias é limitada, o Estado Português devia considerar a possibilidade de atribuição de apoios financeiros que ajudassem a suportar os custos desta operação.

É ainda importante, o conhecimento sobre a presença e a prevalência de microrganismos antigenicamente semelhantes à *Brucella* nos efeitos e no microbioma ambiental das explorações, pois as reacções serológicas cruzadas podem retardar as aspirações de uma região ao estatuto indemne. O recurso a provas serológicas pode ser uma solução, mas o exame bacteriológico deve constituir a principal fonte de informação sobre a presença e a distribuição geográfica desses microrganismos. O exame bacteriológico pode realizar-se a partir de material colhido nos matadouros em rebanhos indemnes com serologias positivas.
Por outro lado, é crucial a participação da O.P.P. através do Médico Veterinário Coordenador e do Médico Veterinário Assistente, na análise da informação e na definição do estatuto sanitário dos rebanhos. Esta colaboração é crucial para evitar que a classificação sanitária dos rebanhos não se baseie apenas em critérios serológicos.

Os elementos que podem ajudar, a definir o estatuto sanitário dos rebanhos, são a presença de factores de risco associados à disseminação da *Brucella* sp. entre rebanhos e, em menor grau de importância, os factores de risco associados à disseminação da brucelose intra-rebanho.

O estudo dos factores de risco associados à ocorrência de brucelose nos pequenos ruminantes na área de acção da O.P.P., identificou a compra de fêmeas, como o factor mais relevante para a eclosão de focos de brucelose. Este aspecto, deve merecer a atenção prioritária dos Produtores, das Direcções das O.P.P., dos seus Médicos Veterinários Coordenadores e Assistentes, e da parte das Autoridades Sanitárias Competentes, a nível Regional e Nacional, particularmente se considerarmos os níveis de controlo no movimento animal, nomeadamente no comércio de animais. A análise dos dados recolhidos em entrevista directa, estruturada num questionário, realizada a uma amostra representativa dos Produtores da O.P.P. da Ovibeira, demonstra a ineficácia, e até algum alheamento, por parte de todos os intervenientes, apesar da legislação em vigor, pelo que é essencial reforçar as medidas de bio-segurança nos rebanhos indemnes.

A gestão sanitária dos rebanhos é facilitada pela existência de bases de dados que armazenem toda a informação respeitante à compra e venda de animais. Nalguns Países, a criação e a implementação de sistemas informativos que regulam e certificam as trocas comerciais de animais entre explorações, teve impacto positivo no controlo de determinadas doenças mas sempre em regimes de voluntariado.

A aquisição de animais deve ser feita em rebanhos indemnes, pelo que é relevante que os Produtores entendam, inequivocamente, o sistema de classificação sanitária, a sua utilidade, e sobretudo, que tenham confiança no sistema e nas classificações sanitárias atribuídas.
As compras não devem basear-se apenas nos resultados serológicos obtidos na última colheita. Primeiro, é preciso localizar a data dessa colheita relativamente ao momento de compra. O critério de segurança do rebanho deve ser definido com base num perfil alargado. Todas as características e práticas de maneio da exploração que tendam a prevenir e/ou a controlar os factores de risco associados à introdução e à disseminação da infecção, são elementos indispensáveis na tomada de decisão sobre uma potencial compra. Registos de introdução de animais, sinais clínicos e/ou lesionais compatíveis com a brucelose, resultados de exames laboratoriais e outros dados que fundamentem a suspeita da infecção brucelica, devem ser investigados.

A origem dos animais a adquirir deve ser pouco diversificada, o que facilita a obtenção de informação sanitária dos rebanhos, e de certo modo, aumenta a confiança sobre a transação comercial. Os animais a adquirir, devem ser jovens e as fêmeas não devem estar gestantes. Por outro lado, é boa prática não adquirir animais em amamentação ou desmamados recentemente, pois podem eliminar a bactéria nas fezes, e dessa forma contaminar o meio ambiente de uma exploração indemne.

A criação de zonas de quarentena não é viável em muitas explorações, mas a separação dos animais adquiridos na sua primeira época de parto, deve ser implementada na exploração. A sua incorporação no rebanho, só se deve verificar, depois do segundo teste negativo consecutivo, o último dos quais, depois do parto, no caso de fêmeas (Mikolon et al., 1998).

Todas as entradas e saídas de animais do rebanho, devem ser registadas e mapeadas e, qualquer rebanho exposto como resultado desses movimentos, deve ser testado e a sua classificação sanitária reavaliada. No caso de suspeita de infecção, os animais introduzidos devem ser eliminados o mais rapidamente possível.

Para além da informação que se pode obter pela consulta do livro de registo, a flutuação do número de animais apresentados em cada saneamento, permite levantar suspeitas sobre a possibilidade de ter havido compra ou venda de animais.
O limite das parcelas deve ser conhecidos, por forma a identificar as rotas de passagem dos animais, e a encontrar soluções que reduzam (ou evitem) os contactos entre rebanhos vizinhos. Estes últimos, devem ser investigados no que respeita à sua classificação sanitária e à frequência e regularidade de testagem.
No caso de compra de pastagens, é necessário investigar a utilização dada à pastagem pelo anterior proprietário. No caso de terem sido frequentadas, por espécies animais susceptíveis à *Brucella* sp., deverá avaliar-se retrospectivamente a classificação sanitária desses rebanhos e o seu destino.
Os rebanhos que pastoreiam em conjunto devem ter a mesma classificação sanitária. No caso de propriedades estatais, alugadas a privados, deve impedir-se que as parcelas sejam sorteadas anualmente, como acontece na região, sobretudo se forem utilizadas por animais susceptíveis à *Brucella* sp.
A observação de contactos, entre animais de um rebanho indemne com um rebanho infectado, deve desencadear a testagem dos animais do rebanho indemne, de forma a garantir que não houve introdução da infecção. A falha na biosegurança do rebanho indemne deve ser investigada e eliminada.
Entre os factores de risco associados à disseminação intra-rebanho da *Brucella* sp., assume particular importância o parto/aborto, mesmo nos rebanhos indemnes, porque a bactéria é eliminada em maior quantidade, durante esse período.
O manejo reprodutivo dos pequenos ruminantes, com a concentração de partos, dificulta a separação das fêmeas em final de gestação. A divisão do rebanho em pequenos grupos, poderá conter a disseminação da infecção e facilitar a execução das medidas de higienização e de desinfecção dos locais de parto. Para além da separação física, já praticada nalgumas explorações, das fêmeas gestantes das fêmeas em produção, as primíparas devem constituir um rebanho à parte, por serem mais susceptíveis à infecção e ao aborto. O isolamento das fêmeas paridas, deve prolongar-se enquanto se observarem corrimentos.
Quando ocorrem partos nas pastagens, os locais de parto devem ser limpos e desinfectados, e a terra revirada. Deve impedir-se os cães, de acederem aos locais de parto, apesar de se tratar de uma medida preventiva de difícil implementação.
Se a *Brucella* sp. invadir um rebanho, a dificuldade em supervisionar os partos, aumenta o risco de ocorrência da doença num efetivo indemne. Se os factores
associados à disseminação da infecção inter-rebanho não forem controlados, a minimização do risco pode passar pela calendarização do saneamento dos rebanhos. O primeiro teste deve ser feito antes do parto para que os reagentes sejam removidos e abatidos, num curto espaço de tempo. Um segundo teste deve ser feito após o parto, no máximo 30 a 60 dias depois (Bargain, 1999).

Os rebanho indemnes devem ser inspeccionados, periodicamente, pelo Médico Veterinário Assistente e pelos Serviços Oficiais. Esta recomendação, deve ser objecto de reflexão, uma vez que o número de colheitas diminuiu nos rebanhos indemnes, e o intervalo entre colheitas não desencadeia a visita do Médico Veterinário à exploração.

Sempre que a infecção brucélica seja detectada num rebanho indemne, este deverá ser alvo de um Programa Individual de Saneamento (P.I.S.) e a origem da infecção deve ser clarificada através de um estudo de foco.

A manutenção do estatuto sanitário de indemne deve ser considerada uma prioridade. É preciso não esquecer, que estes rebanhos representam o corolário do trabalho desenvolvido ao longo de décadas e um dos principais objectivos do programa. Consequentemente, as medidas em curso devem privilegiar a protecção destes rebanhos, particularmente na região, devido aos baixos valores de prevalência e de incidência.

Na região, há muitas similaridades entre os rebanhos infectados. No entanto, as situações em que se encontram esses rebanhos, diferem o suficiente para se potencializar nessas diferenças, construindo um P.I.S. eficaz.

Um P.I.S. não deve ser desenhado para fazer face a uma longa lista idealista de objectivos (Barton and Ragan, 1998). A nível da exploração, deve listar-se apenas, o que o Produtor pode e deve fazer.

Entre os vários aspectos que devem ser abordados na concepção de um P.I.S., salientamos:
- Fazer um diagrama da exploração que defina os limites da propriedade e identifique os rebanhos vizinhos. Estes deverão ser objecto de saneamento, sempre que exista possibilidade de contacto com o rebanho infectado em causa;

- Garantir que não há introdução de animais no rebanho. A introdução de animais de rebanhos indemnes significa um aumento de animais susceptíveis;

- O protocolo de testagem, no que se refere às provas serológicas a utilizar, deve privilegiar um aumento da sensibilidade sempre que a prevalência intra-rebanho for elevada, podendo contudo, o protocolo ser alterado, em função da evolução da taxa de incidência da brucelose e das evidências epidemiológicas que se vão constatando;

- Deve calendarizar-se as colheitas de sangue, de acordo com a evolução da taxa de incidência da brucelose intra-rebanho e do protocolo de testagem. Contudo, as colheitas de sangue, deverão ser estabelecidas em função das épocas de parto e abranger a totalidade do rebanho;

- Os animais reagentes devem ser abatidos no mais curto espaço de tempo, sobretudo as fêmeas gestantes, assegurando que o parto/aborto não ocorre na exploração. Qualquer atraso no abate dos animais, não deve ser motivo para a interrupção do calendário de saneamento, como se verifica actualmente;

- Os animais reagentes devem ser marcados, rapidamente. A existência de fêmeas reagentes com crias, deve obrigar também, à marcação das crias e ao seu posterior abate. Os animais para abate sanitário, devem ser isolados, sobretudo as fêmeas gestantes, pois existe a possibilidade de aborto;

- Os abates devem ser da responsabilidade das Autoridades Sanitárias Oficiais, pelo que as mesmas devem acompanhar a marcação, o transporte e o abate dos animais. A O.P.P. deverá ser notificada, antecipadamente, sobre as datas de realização destas operações e sobre qualquer informação relevante para a gestão sanitária dos rebanhos;

- O abate e a incineração de animais reagentes na própria exploração, à semelhança do que tem acontecido nos programas de luta contra a peste suína africana, deve ser considerado, atendendo a que actualmente, as carcaças dos animais reagentes são destruídas;
- A ocorrência de abortos deve ser registada e declarada de forma voluntária. Sempre que possível, o aborto e os produtos do aborto, devem ser enviados para o laboratório para que se proceda a exames microbiológicos. Os animais devem ser testados após o aborto, ou no caso de rebanho infectado, abater a fêmea de imediato, independentemente de qualquer resultado serológico ou bacteriológico.

A vacinação dos animais nos rebanhos infectados, tem sido equacionada como uma medida a introduzir na região. Contudo, acreditamos que a sua aplicação não trará benefícios adicionais substanciais, e atrasará a obtenção do estatuto de oficialmente indemne para a região.

São poucos os rebanhos infectados, e é muito provável que parte deles não estejam sequer infectados (falso-positivos). A aplicação de um P.I.S. nos rebanhos infectados, justifica-se sem que a vacinação seja obrigatória. É mais importante privilegiar o acompanhamento da aplicação das medidas, não só para garantir que são executadas, mas também para avaliar o seu impacto.

A avaliação do programa deve ser programada, de forma a que eventuais ajustamentos, possam ser feitos a qualquer momento. Após um rebanho deixar de apresentar serologias positivas, é necessário certificá-lo como indemne. Para além da serologia, qualquer comportamento de risco deve ser eliminado, e as medidas referidas na legislação para rebanhos indemnes, implementadas.

No caso dos rebanhos com estatuto sanitário indefinido, deve implementar-se um plano de testagem que lhes permita atingir, num curto espaço de tempo, o estatuto de indemne, e comprovar que não estão infectados. É importante que todos os rebanhos sejam incluídos no Programa de Erradicação da Brucelose nos Pequenos Ruminantes, e que qualquer sanção a aplicar, não se limite aos Produtores que apresentam anualmente os seus rebanhos a saneamento, pelo que o conhecimento actualizado dos produtores existentes é primordial. No entanto, a legislação deve ter um carácter mais pedagógico que punitivo, devendo as sanções recair, sobretudo no acesso a subsídios, sobre os que não cumprem deliberadamente com o programa aprovado.
O sucesso do Programa de Erradicação da Brucelose nos Pequenos Ruminantes depende muito da motivação de cada interveniente. A eficácia de muitas das medidas, depende da persistência e do empenhamento, sobretudo, do Médico Veterinário Assistente da exploração e da confiança estabelecida com o Produtor. O Médico Veterinário Assistente da exploração deve participar na definição das medidas a tomar nos rebanhos a que dá assistência, deve ser consultado sobre eventuais alterações a introduzir (práticas de maneio, beneficiação de instalações, etc.) e toda a informação útil ao desempenho da sua actividade deve ser-lhe fornecida regularmente.

O Programa de Controlo e Erradicação da Brucelose nos Pequenos Ruminantes não pode depender da eventual aprovação de co-financiamentos Comunitários. É importante que o Estado Português, determine com antecedência, o orçamento disponível para a execução do programa, uma vez que quer a opção por diferentes medidas, quer a prioridade das mesmas, depende do financiamento disponível.

O cerne de qualquer programa de controlo e de erradicação da brucelose enraíza-se na protecção da Saúde Pública. No entanto, a colaboração entre os Serviços Oficiais dos Ministérios que tutelam a saúde humana e a agricultura, assim como as Autarquias, não decorre de forma regular e consistente.

É ainda urgente, implementar medidas de educação sanitária no que diz respeito ao risco de contaminação dos trabalhadores da exploração. Estas medidas devem incidir nos cuidados a ter com os produtos do parto e do aborto e sobre o perigo de consumo de leite cru ou de queijo com cura incompleta.

O consumo de leite não é frequente, com exceção do leite de cabra, cujos “poderes” terapêuticos são muitas vezes invocados pelas populações rurais. Trata-se sobretudo de autoconsumo, pelo que o saneamento dos animais nessas explorações deve ser prioritário e regular.

Deve assegurar-se que o leite cru proveniente de rebanhos infectados não é utilizado no fabrico de queijo. Não só os compradores de leite devem ser impedidos de comprar esse leite, como as queijarias artesanais sediadas nessas explorações não devem poder laborar leite cru. Embora experimentalmente, tenha sido demonstrado que a Brucella sp. resiste até trinta dias em queijos feitos a partir do leite cru (Verger, 1985; Plommet et al., 1988; Centeno et al., 1990; El-
Daher, et al., 1990; Acedo et al., 1997) a bactéria tem sido isolada em queijos contaminados naturalmente, muito para além desse período de tempo. Por outro lado, sobretudo no início da época de produção, o período de maior eliminação da bactéria no leite, é comum o consumo de queijo com cura inferior ao indicado para os queijos da Beira Baixa. Estes, por sua vez, têm um tempo de cura inferior a 60 dias, valor referenciado na legislação como o tempo necessário para garantir a eliminação total da Brucella sp. do queijo.

A partilha de informação entre Ministérios, no que respeita a rebanhos infectados e a casos humanos de Febre de Malta, pode permitir o desenvolvimento de acções conjuntas, nomeadamente de iniciativas de educação sanitária. O rastreio da população rural e dos trabalhadores de explorações infectadas, deve ser implementado. Por outro lado, a notificação dos casos humanos de Febre de Malta, pode permitir a detecção de rebanhos infectados que escaparam ao ciclo de saneamento do programa.

Nos matadouros, os magarefes deveriam ser submetidos a exames serológicos periódicos, e os cuidados de protecção, nomeadamente olhos, nariz e mãos, deveriam ser obrigatórios, mesmo durante o acto de higienização da linha de abate. Estas protecções, devem ser extensíveis a todos os presentes na área de abate, especialmente durante abates sanitários.

Finalmente, voltamos a enfatizar que o sucesso do programa depende, não só das motivações criadas mas sobretudo, da importância que cada um dos intervenientes esteja disposto a conceder a cada medida considerada necessária. Este facto, é ainda mais pertinente na região, devido à prevalência e à taxa de incidência terem atingido valores muito baixos. Este contexto, exige e torna legítimas as seguintes aspirações: (i) garantir a manutenção do estatuto indemnize das explorações e (ii) erradicar a brucelose das populações de pequenos ruminantes da região.
CAPÍTULO 9

CONCLUSÕES

Após a entrada de Portugal na CEE, face à persistência de brucelose nos efectivos de ruminantes nacionais que representava um entrave à livre circulação de ovinos e caprinos, assim como à venda de produtos provenientes destas espécies animais, foi apresentado e aprovado pelo Comité Veterinário Permanente da U.E., em 1990, o “Programa de Erradicação da Brucelose em Pequenos Ruminantes” (Decisão da Comissão 91/217/CEE, de 26 de Março).

Considerando a composição de rebanho, a prevalência entre os rebanhos de caprinos registou os valores mais baixos, com um máximo em 1997 (1,4 %), sendo de 0,5 % em 1999. Nos rebanhos mistos, a prevalência evoluiu de 13,1 % em 1994 para 5,5 % em 1996, registando-se uma subida gradual até 1998 (8,1 %) com uma inflexão em 1999 (6,2 %). Nos rebanhos de ovinos, a prevalência oscilou entre 5 e 7 %, sendo de 5,2 % em 1999.
A nível animal, a prevalência na zona-alvo subiu de 0,87 % em 1994 para 1,11 % em 1999, valores similares aos registados nos concelhos de Castelo Branco e Idanha-a-Nova. No concelho de Vila Velha de Rodão, a prevalência evoluiu de 0,01 % em 1994 (valor mais baixo) para 0,31 % em 1999 (valor mais elevado).

Nos rebanhos de caprinos, a prevalência a nível animal atingiu um valor máximo de 0,24 % em 1997. Nos rebanhos mistos e de ovinos a prevalência manteve-se estável, não ultrapassando o 1,5 %.

A variação da incidência, os coeficientes de correlação intra-rebanho e o Índice de Moran calculados para a área estudada, demonstram que a brucelose evoluiu de forma endémica, no período analisado. Estes indicadores reflectem as dificuldades sentidas na redução dos níveis de infeccção. A dinâmica da ocorrência de brucelose nos rebanhos de pequenos ruminantes, é marcada por dificuldades na extinção dos focos de doença, nomeadamente, nas explorações localizadas nas freguesias de Aldeia de Santa Margarida, Medelim, Monforte da Beira, Rosmaninhel e Lardosa. O Índice de Moran demonstrou a tendência para o aparecimento de agregados de brucelose.

A análise espaço-temporal identificou um agregado geográfico, constante ao longo do período investigado, de ocorrência mais provável de brucelose, e que engloba todas as freguesias de Idanha-a-Nova (excepto Penha Garcia e de Monfortinho) e todas as freguesias de Castelo Branco, limítrofes ao concelho de Idanha-a-Nova. O reconhecimento deste agregado, reforça a necessidade de conhecer os factores de risco que contribuem para a ocorrência de brucelose nos rebanhos de pequenos ruminantes da área, e da implementação e execução de medidas idênticas em toda essa área.
O modelo de regressão logística identificou a compra de fêmeas (OR = 10,43), o registo de partos durante o mês de março (OR = 2,90), a separação em grupo das fêmeas gestantes na altura do parto (OR = 5,09) e o acesso dos cães aos produtos do parto (OR = 4,00) como os factores risco mais importantes. A presença simultânea destes quatro factores numa exploração de pequenos ruminantes traduz-se numa probabilidade de 0,7 de ocorrência de brucelose.

A magnitude da influência destes factores, na perpetuação da infecção brucelica nos rebanhos de pequenos ruminantes da zona, impõe a necessidade de se modificar, progressivamente, as práticas de maneio em vigor, sobretudo do maneio de parto. A introdução de mudanças e a qualidade da sua execução ao longo dos anos, reflectirá sempre, a motivação do binómio Médico Veterinário/Produtor na acções de transferência de tecnologias e de ensino/aprendizagem de educação sanitária.

Por outro lado, é necessário credibilizar o sistema de certificação sanitária dos rebanhos, de forma a permitir uma gestão dos mesmos, dando garantias reais aos Produtores nas compras de animais. Recorde-se que 47 % dos produtores desconhecem a classificação sanitária dos seus rebanho, o que compromete seriamente a utilidade do sistema de certificação sanitária de rebanhos.

A avaliação do sistema de informativo que suporta o Programa de Erradicação da Brucelose, identificou um conjunto de situações que estão a dificultar o acesso das explorações ao estatuto indemne. Entre outras, salientamos:

- A identificação dos produtores e dos animais;
- Em média, 27 % dos rebanhos saneados, não foram testados no ano anterior, 1,13 % dos quais são classificados como infectados, após o saneamento;
- Ausência de saneamento em rebanhos infectados;
- Falta de atribuição de estatuto sanitário a rebanhos saneados (máximo de 6,11% em 1998). Em média, 2,24 % destes rebanhos são classificados como infectados, após o saneamento;
- Incumprimento dos critérios definidos para a atribuição das classificações sanitárias (por exemplo, rebanhos infectados que atingem o estatuto de indemne sem o número de colheitas negativas exigidas pela lei ou rebanhos indemnes que são classificados como infectados sem identificação de animais reagentes);

- Alterações frequentes na metodologia da aplicação das provas serológicas. O protocolo de testagem revela insuficiências, sobretudo em rebanhos indemnes, associadas à falta de especificidade das provas utilizadas;

- Falta de comunicação da informação obtida, em especial, à O.P.P..

Para além da correcção das situações referidas, é necessário implementar, com urgência, um conjunto de medidas que contribuam para aumentar a eficácia do Programa:

- Redefinir os critérios de testagem dos rebanhos, recorrendo à bacteriologia a partir de amostras de leite e de amostras colhidas nos animais abatidos no Matadouro;

- Determinar as datas de colheita de sangue, em função das épocas de parto (sobretudo nos rebanhos infectados);

- Não fazer depender o acto de saneamento do abate dos animais reagentes;

- Flexibilizar o sistema de informação existente e implementar um Sistema de Informação Geográfica, para aumentar a rapidez e a eficácia da análise de dados, e permitir o acesso mais facilitado à informação por parte dos vários intervenientes, nomeadamente da O.P.P.;

- Permitir a participação dos Médicos Veterinários, Coordenador e Executores na selecção das medidas a aplicar e na definição do estatuto sanitário de cada rebanho.

A obtenção do estatuto indemnne de brucelose animal para a região é um imperativo para assegurar a competitividade económica das explorações pecuárias e para minimizar o êxodo das populações rurais do interior para o tecido urbano do litoral. Porém, a proporção de rebanhos com classificação de indemne foi
apenas 66% em 1999, apesar dos baixos níveis de incidência e de prevalência de brucelose nos rebanhos da zona.
Os resultados obtidos no presente estudo sugerem que nem os Produtores nem os sistemas de produção de ovinos e caprinos da zona, evoluíram o necessário para que se possa concretizar objectivos tão ambiciosos como a erradicação da *Brucella melitensis*, algo que ainda nenhum País da bacia do mediterrâneo, com brucelose endémica, conseguiu.
Os critérios que norteiam a compra de animais ou o tipo de maneio do parto são elucidativos de sistemas de produção pouco rigorosos, e consequentemente, pouco exigentes relativamente às medidas de bio-segurança da exploração, que são os aliceres para se conseguir (e manter) efectivos livres de brucelose. Outras características, como a idade e a escolaridade dos Produtores ou o domínio de conceitos como o sequestro e a classificação sanitária do seu efeito, mostram como é reduzida a circulação de informação e as limitações da capacidade de reflectir sobre essa informação.
Todavia parece-nos correcto que se estabeleçam metas ambiciosas no tempo. É essa a estratégia do Comité Veterinário Permanente da U.E., e o motivo da atribuição de financiamentos tão elevados, nos programas de erradicação.
Pretende-se erradicar a brucelose das populações animais da U.E., de forma a eliminar mais uma barreira à livre circulação de animais e produtos de origem animal. Todavia, acreditamos também, que esse objectivo só será alcançado, se à medida que a combinação de métodos de controlo, de prevenção e de vigilância da brucelose for sendo ajustada a novos cenários de ocorrência de doença, decorra uma evolução acentuada dos sistemas de produção de ovinos e de caprinos na zona de estudo. A experiência da erradicação da peste suína africana em Portugal é elucidativa a esse respeito. A reestruturação e renovação de toda a fileira, da produção à comercialização de suínos vivos e de produtos de origem porcina, contribuiu para se erradicar a doença (Melo, 1994).

O facto de no distrito de Castelo Branco, os casos de Febre de Malta notificados, representarem 6 a 8% do total Nacional, e 17 a 20% dos casos notificados na Região Centro, justifica um maior empenhamento dos serviços Veterinários e dos
Produtos para se atingir, e manter, o estatuto indemne das explorações. Enfatize-se que uma melhor articulação entre as Autoridades Competentes de Saúde Animal e de Saúde Humana, é imprescindível quer para reduzir a incidência de Febre de Malta quer para informar as populações e assegurar a sua colaboração na erradicação da zoonose.

É ainda importante, identificar os factores de protecção presentes nos rebanhos das freguesias onde não se registam casos de brucelose de forma permanente e, identificar os factores de risco na área definida pela análise espaço-temporal como agregado mais provável de ocorrência de brucelose nos rebanhos de pequenos ruminantes. O conhecimento destes factores permitirá selecionar a melhor combinação de métodos de vigilância e/ou de controlo a implementar e os temas a abordar no plano de educação sanitária das populações.

Refira-se, ainda, que quer a abordagem de avaliação do programa de erradicação de brucelose nos pequenos ruminantes que utilizámos quer as conclusões a que chegámos, poderão ser muito úteis para analisar e compreender cenários de baixa prevalência de brucelose com presença de agregados na população, existentes ou previstos a curto prazo para as diferentes Regiões de Agricultura do Continente e Regiões Autónomas.

Creio que demonstrámos que o controlo e a erradicação da brucelose é muito mais complexo que a identificação e o abate dos ovinos e caprinos reagentes. O actual “Programa de Erradicação da Brucelose em Pequenos Ruminantes” está focalizado nos animais reagentes mas quando estes animais são identificados podem já ter transmitido a infecção. Por isso, o conceito de que a forma mais eficaz de eliminar a Brucella melitensis dos rebanhos, é a remoção dos reagentes, pode estar incorrecto. Do ponto de vista do potencial de disseminação intra e inter-rebanhos da brucelose, as cabras e as ovelhas infectadas que se irão tornar reagentes, são o grupo mais importante nos rebanhos. Porém, à data de redacção desta tese, não há testes satisfatórios para detectar animais nesta fase de infecção.
pela *Brucella melitensis*. Esta é, indiscutivelmente, a maior limitação técnica actual, ao controlo e erradicação da zoonose.

Finalmente, é crucial que os Produtores percebam que erradicar a brucelose é um bom investimento. Os Produtores não existem para provar que são capazes de manter um rebanho B3; existem para produzir alimentos e para ganhar dinheiro. Os programas de controlo e erradicação da brucelose, baseados em medidas obrigatórias, falharão, enquanto houver possibilidades de evasão. A imposição, só tem fundamento porque há justificação de Saúde Pública e económica, porque uma proporção elevada dos serviços prestados são viabilizados por verbas públicas, e quando há penalizações para o incumprimento e uma fiscalização eficiente. O confronto e o antagonismo levam, inevitavelmente, ao ressentimento. A persuasão é muito mais eficaz na mobilização da comunidade de Produtores. Isto, reforça a abordagem da erradicação da brucelose como um problema da Comunidade. Um problema de Saúde Pública e de Saúde Animal, cuja erradicação depende do compromisso total de todos os intervenientes; compromisso que não existe neste momento.

O frágil tecido produtivo do Sul da Beira Interior não sobreviveria a todas as constrições necessárias. Consequentemente, as limitações técnicas, logísticas e psicológicas, referidas nesta tese, impedirão o sucesso do actual “Programa de Erradicação da Brucelose em Pequenos Ruminantes”. Parece-nos mais adequado, operacional e um investimento mais rentável, apostar numa abordagem multifocal do controlo da doença, dirigida para os grupos da população de pequenos ruminantes e para os agregados geográficos da região, com maior probabilidade de ocorrência e de persistência da brucelose.

A prevenção da ocorrência de novos focos de brucelose, deve ser o elemento nuclear da estratégia, sustentada por evidência científica sólida, resultante da realização de estudos observacionais e experimentais a nível regional, e pela participação activa da indústria local, dos médicos veterinários assistentes das explorações, dos médicos veterinários responsáveis e executores das O.P.P., e, das Autoridades Sanitárias Competentes, de Saúde Animal e Saúde Pública.

Anexos
Anexo I

Especificidade e Sensibilidade do Rosa Bengala e da Fixação do Complemento
<table>
<thead>
<tr>
<th>Prova</th>
<th>Espécie Animal</th>
<th>Natureza</th>
<th>N.º de Animais</th>
<th>Cultura</th>
<th>Sensibilidade *</th>
<th>Especificidade *</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Rebanhos indemnes (1)</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>100</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Rebanhos indemnes (1)</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>100</td>
</tr>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Infectados exp. (10^5 CFU) (1)</td>
<td>26</td>
<td>Brucella melitensis H38</td>
<td>7.7</td>
<td>ND</td>
</tr>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Infectados exp. (10^5 CFU) (1)</td>
<td>26</td>
<td>Brucella melitensis H38</td>
<td>29.1</td>
<td>ND</td>
</tr>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Infectados exp. ($5x10^5$ CFU) (1)</td>
<td>22</td>
<td>Brucella melitensis H38</td>
<td>87.2</td>
<td>ND</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Infectados exp. (103 CFU) (1)</td>
<td>26</td>
<td>Brucella melitensis H38</td>
<td>5.0</td>
<td>ND</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Infectados exp. (105 CFU) (1)</td>
<td>26</td>
<td>Brucella melitensis H38</td>
<td>25.9</td>
<td>ND</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Infectados exp. ($5x107$ CFU) (1)</td>
<td>22</td>
<td>Brucella melitensis H38</td>
<td>65.3</td>
<td>ND</td>
</tr>
<tr>
<td>8% R.B.</td>
<td>Caprinos</td>
<td>Infectados exp. (10^5 CFU) (2)</td>
<td>40/200</td>
<td>Brucella melitensis biovar 1</td>
<td>70 (35,93)</td>
<td>100 (97,7,100)**</td>
</tr>
<tr>
<td>3 % R.B.</td>
<td>Caprinos</td>
<td>Infectados exp. (108 CFU) (2)</td>
<td>40/200</td>
<td>Brucella melitensis biovar 2</td>
<td>90 (55,100)</td>
<td>99.5 (96,8,100)**</td>
</tr>
<tr>
<td>4,5 % R.B.</td>
<td>Caprinos</td>
<td>Infectados exp. (108 CFU) (2)</td>
<td>40/197</td>
<td>Brucella melitensis biovar 3</td>
<td>70 (35,93)</td>
<td>100 (97,6,100)**</td>
</tr>
<tr>
<td>F.C.</td>
<td>Caprinos</td>
<td>Infectados exp. (108 CFU) (2)</td>
<td>40/191</td>
<td>Brucella melitensis biovar 4</td>
<td>80 (44,97)</td>
<td>100 (97,5,100)**</td>
</tr>
<tr>
<td>R.B.</td>
<td>Caprinos</td>
<td>Infectados (3)</td>
<td>55</td>
<td>(+) Brucella melitensis</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>F.C.</td>
<td>Caprinos</td>
<td>Infectados (3)</td>
<td>55</td>
<td>(+) Brucella melitensis</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>R.B.</td>
<td>Caprinos</td>
<td>Indemnes (3)</td>
<td>127</td>
<td>ND</td>
<td>ND</td>
<td>100</td>
</tr>
<tr>
<td>F.C.</td>
<td>Caprinos</td>
<td>Indemnes (3)</td>
<td>127</td>
<td>ND</td>
<td>ND</td>
<td>100</td>
</tr>
<tr>
<td>R.B.</td>
<td>Caprinos</td>
<td>Vacinados s.c. (10^5 CFU) (3)</td>
<td>20</td>
<td>ND</td>
<td>80 (> 6 meses)</td>
<td></td>
</tr>
<tr>
<td>F.C.</td>
<td>Caprinos</td>
<td>Vacinados s.c. (109 CFU) (3)</td>
<td>20</td>
<td>ND</td>
<td>75 (> 6 meses)</td>
<td></td>
</tr>
<tr>
<td>R.B.</td>
<td>Caprinos</td>
<td>Vacinados conj (10^5 CFU) (3)</td>
<td>10</td>
<td>ND</td>
<td>100 (> 4 meses)</td>
<td></td>
</tr>
<tr>
<td>F.C.</td>
<td>Caprinos</td>
<td>Vacinados conj (109 CFU) (3)</td>
<td>10</td>
<td>ND</td>
<td>100 (> 4 meses)</td>
<td></td>
</tr>
<tr>
<td>R.B.</td>
<td>Ovino</td>
<td>Reb. Infectados C/abortos vacinado (4)</td>
<td>55</td>
<td>ND</td>
<td>78.1</td>
<td>ND</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovino</td>
<td>Reb. Infectados N/ abortos vacinado (4)</td>
<td>77</td>
<td>ND</td>
<td>83.1</td>
<td>ND</td>
</tr>
<tr>
<td>RB + FC</td>
<td>Ovinos</td>
<td>Reb. Infectados C/abortos vacinado (4)</td>
<td>55</td>
<td>ND</td>
<td>87.3</td>
<td>ND</td>
</tr>
<tr>
<td>RB + FC</td>
<td>Ovinos</td>
<td>Reb. Infectados N/ abortos vacinado (4)</td>
<td>77</td>
<td>ND</td>
<td>93.6</td>
<td>ND</td>
</tr>
<tr>
<td>RB + FC</td>
<td>Ovinos</td>
<td>Rebanhos infectados (5)</td>
<td>69,23</td>
<td>(+) Brucella melitensis</td>
<td>96,42</td>
<td>96,42</td>
</tr>
<tr>
<td>RB + FC</td>
<td>Ovinos</td>
<td>Rebanhos suspeitos (5)</td>
<td>15,63</td>
<td>98,94</td>
<td></td>
<td>98,94</td>
</tr>
<tr>
<td>RB + FC</td>
<td>Ovinos</td>
<td>Rebanhos indemnes (5)</td>
<td>40</td>
<td>99,72</td>
<td></td>
<td>99,72</td>
</tr>
</tbody>
</table>

* Percentagem; ** 24 semanas após; (+) cultura positiva; ND - Não determinado

Tabela n.º 1- Especificidade e sensibilidade do Rosa Bengala e da Fixação de Complemento
<table>
<thead>
<tr>
<th>Prova</th>
<th>Espécie Animal</th>
<th>Natureza</th>
<th>N.º de Animais</th>
<th>Cultura</th>
<th>Sensibilidade</th>
<th>Especificidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Orgãos (5)</td>
<td>92</td>
<td>(+) Brucella melitensis</td>
<td>82</td>
<td>44</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Orgãos (5)</td>
<td>92</td>
<td>(+) Brucella melitensis</td>
<td>100</td>
<td>37</td>
</tr>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Efeito infectado (5)</td>
<td>86</td>
<td>(+) Brucella melitensis</td>
<td>82</td>
<td>42</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Efeito infectado (5)</td>
<td>86</td>
<td>(+) Brucella melitensis</td>
<td>100</td>
<td>32</td>
</tr>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Animais infectados/indemnes (6)</td>
<td>48</td>
<td>Brucella melitensis biovar 2</td>
<td>89,5</td>
<td>ND</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Animais infectados/indemnes (6)</td>
<td>48</td>
<td>Brucella melitensis biovar 2</td>
<td>73</td>
<td>ND</td>
</tr>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Animais infectados/indemnes (7)</td>
<td>37</td>
<td>Brucella melitensis biovar 1</td>
<td>94,6</td>
<td>ND</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Animais infectados/indemnes (7)</td>
<td>37</td>
<td>Brucella melitensis biovar 1</td>
<td>91,9</td>
<td>ND</td>
</tr>
<tr>
<td>R.B.</td>
<td>Ovinos</td>
<td>Animais infectados/indemnes (7)</td>
<td>48</td>
<td>Brucella melitensis biovar 3</td>
<td>93,8</td>
<td>ND</td>
</tr>
<tr>
<td>F.C.</td>
<td>Ovinos</td>
<td>Animais infectados/indemnes (7)</td>
<td>48</td>
<td>Brucella melitensis biovar 3</td>
<td>85,5</td>
<td>ND</td>
</tr>
<tr>
<td>R.B.</td>
<td>Cães</td>
<td>Animais infectados/indemnes (7)</td>
<td>53</td>
<td>Brucella melitensis biovar 1</td>
<td>92,4</td>
<td>ND</td>
</tr>
<tr>
<td>F.C.</td>
<td>Cães</td>
<td>Animais infectados/indemnes (7)</td>
<td>53</td>
<td>Brucella melitensis biovar 1</td>
<td>94,5</td>
<td>ND</td>
</tr>
</tbody>
</table>

* Percentagem; ** 24 semanas após; (+) cultura positiva; ND - Não determinado

(1) Jacques et al. (1998); (2) Mikolon et al. (1998); (3) Díaz-Aparicio et al. (1994); (4) Berkovich et al. (1998); (5) Sales Henriques (1993); (6) Biancifiori et al. (1996); (7) Díaz-Aparicio et al. (1993)

Continuação da Tabela n.º 1- Especificidade e sensibilidade do Rosa Bengala e da Fixação de Complemento
Space Time analysis scanning for clusters with high rates using the Poisson model. Analysis includes purely spatial and purely temporal clusters.

SUMMARY OF DATA

Study period: 1994/1/1 - 1999/12/31
Number of census areas: 46
Total population: 1433
Total cases: 136
Annual cases / 100000.: 1581.9

MOST LIKELY CLUSTER

1. Census areas included: F050503, F050505, F050501, F050509,
 F050504, F050215, F050511, F050213,
 F050216, F050517, F050514, F050506,
 F050508, F050207, F050512, F050502,
 F050208, F050516, F050214, F050515,
 F050211, F050201, F050513
Coordinates / radius.: (7.210 S, 39.880 E) / 28.91
Time frame..........: 1994/1/1 - 1999/12/31
Population..........: 571
Number of cases....: 113 (54.22 expected)
Annual cases / 100000.: 3297.2
Overall relative risk.: 2.084
Log likelihood ratio.: 53.811929
Monte Carlo rank....: 1/1000
P-value.............: 0.001

SECONDARY CLUSTERS

2. Census areas included: All
Coordinates / radius.: (7.450 S, 39.910 E) / 6367.00
Time frame..........: 1994/1/1 - 1994/12/31
Number of cases....: 57 (24.69 expected)
Annual cases / 100000.: 3652.7
Overall relative risk.: 2.309
Log likelihood ratio.: 20.609121
Monte Carlo rank....: 1/1000
P-value.............: 0.001
3. Census areas included: F050209, F050224
 Coordinates / radius: (7.570 S, 39.930 E) / 4.41
 Time frame: 1994/1/1 - 1994/12/31
 Population: 22
 Number of cases: 3 (0.41 expected)
 Annual cases / 100000: 11610.2
 Overall relative risk: 7.339
 Log likelihood ratio: 3.413383
 Monte Carlo rank: 964/1000
 P-value: 0.964

The log likelihood ratio value required for an observed cluster to be significant at level
 ... 0.01: 9.964014
 ... 0.05: 8.235349

<table>
<thead>
<tr>
<th>Census Area</th>
<th>Observed Cases</th>
<th>Expected Cases</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>F050209</td>
<td>6</td>
<td>3.21</td>
<td>1.868</td>
</tr>
<tr>
<td>F050202</td>
<td>0</td>
<td>1.83</td>
<td>0.000</td>
</tr>
<tr>
<td>F050203</td>
<td>0</td>
<td>4.51</td>
<td>0.000</td>
</tr>
<tr>
<td>F050204</td>
<td>1</td>
<td>0.79</td>
<td>1.264</td>
</tr>
<tr>
<td>F050205</td>
<td>3</td>
<td>7.67</td>
<td>0.391</td>
</tr>
<tr>
<td>F050206</td>
<td>0</td>
<td>0.57</td>
<td>0.000</td>
</tr>
<tr>
<td>F050207</td>
<td>2</td>
<td>2.12</td>
<td>0.943</td>
</tr>
<tr>
<td>F050208</td>
<td>0</td>
<td>1.44</td>
<td>0.000</td>
</tr>
<tr>
<td>F050209</td>
<td>2</td>
<td>0.93</td>
<td>2.143</td>
</tr>
<tr>
<td>F050210</td>
<td>2</td>
<td>1.91</td>
<td>1.045</td>
</tr>
<tr>
<td>F050211</td>
<td>21</td>
<td>4.27</td>
<td>4.916</td>
</tr>
<tr>
<td>F050212</td>
<td>1</td>
<td>4.65</td>
<td>0.215</td>
</tr>
<tr>
<td>F050213</td>
<td>1</td>
<td>1.09</td>
<td>0.916</td>
</tr>
<tr>
<td>F050214</td>
<td>3</td>
<td>3.46</td>
<td>0.866</td>
</tr>
<tr>
<td>F050215</td>
<td>0</td>
<td>2.43</td>
<td>0.000</td>
</tr>
<tr>
<td>F050216</td>
<td>13</td>
<td>2.77</td>
<td>4.697</td>
</tr>
<tr>
<td>F050217</td>
<td>0</td>
<td>1.20</td>
<td>0.000</td>
</tr>
<tr>
<td>F050218</td>
<td>0</td>
<td>1.50</td>
<td>0.000</td>
</tr>
<tr>
<td>F050219</td>
<td>0</td>
<td>1.17</td>
<td>0.000</td>
</tr>
<tr>
<td>F050220</td>
<td>0</td>
<td>1.20</td>
<td>0.000</td>
</tr>
<tr>
<td>F050221</td>
<td>0</td>
<td>1.91</td>
<td>0.000</td>
</tr>
<tr>
<td>F050222</td>
<td>4</td>
<td>5.83</td>
<td>0.686</td>
</tr>
<tr>
<td>F050223</td>
<td>0</td>
<td>10.83</td>
<td>0.000</td>
</tr>
<tr>
<td>F050224</td>
<td>3</td>
<td>1.12</td>
<td>2.672</td>
</tr>
<tr>
<td>F050225</td>
<td>0</td>
<td>0.81</td>
<td>0.000</td>
</tr>
<tr>
<td>F050501</td>
<td>3</td>
<td>1.58</td>
<td>1.897</td>
</tr>
<tr>
<td>F050502</td>
<td>7</td>
<td>1.41</td>
<td>4.970</td>
</tr>
<tr>
<td>F050503</td>
<td>8</td>
<td>4.97</td>
<td>1.610</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>F050504</td>
<td>0</td>
<td>0.32</td>
<td>0.000</td>
</tr>
<tr>
<td>F050505</td>
<td>5</td>
<td>3.39</td>
<td>1.477</td>
</tr>
<tr>
<td>F050506</td>
<td>2</td>
<td>0.76</td>
<td>2.634</td>
</tr>
<tr>
<td>F050507</td>
<td>0</td>
<td>1.38</td>
<td>0.000</td>
</tr>
<tr>
<td>F050508</td>
<td>7</td>
<td>3.50</td>
<td>2.001</td>
</tr>
<tr>
<td>F050509</td>
<td>3</td>
<td>3.70</td>
<td>0.811</td>
</tr>
<tr>
<td>F050510</td>
<td>2</td>
<td>1.87</td>
<td>1.071</td>
</tr>
<tr>
<td>F050511</td>
<td>1</td>
<td>1.14</td>
<td>0.878</td>
</tr>
<tr>
<td>F050512</td>
<td>18</td>
<td>3.94</td>
<td>4.570</td>
</tr>
<tr>
<td>F050513</td>
<td>4</td>
<td>1.09</td>
<td>3.665</td>
</tr>
<tr>
<td>F050514</td>
<td>2</td>
<td>2.85</td>
<td>0.702</td>
</tr>
<tr>
<td>F050515</td>
<td>1</td>
<td>1.14</td>
<td>0.878</td>
</tr>
<tr>
<td>F050516</td>
<td>0</td>
<td>1.04</td>
<td>0.000</td>
</tr>
<tr>
<td>F050517</td>
<td>6</td>
<td>2.59</td>
<td>2.313</td>
</tr>
<tr>
<td>F051101</td>
<td>2</td>
<td>6.88</td>
<td>0.291</td>
</tr>
<tr>
<td>F051102</td>
<td>2</td>
<td>6.82</td>
<td>0.293</td>
</tr>
<tr>
<td>F051103</td>
<td>1</td>
<td>5.49</td>
<td>0.182</td>
</tr>
<tr>
<td>F051104</td>
<td>0</td>
<td>10.91</td>
<td>0.000</td>
</tr>
</tbody>
</table>

For further study using a GIS or database program, an ASCII format GIS file has been created, describing the detected clusters.
The name of this file is C:\Os meus documentos\curso\manuel\satscan\clustermanel.gis.

PARAMETER SETTINGS

Input Files

Case File : C:\Os meus documentos\curso\manuel\satscan\casmanel.cas
Population File : C:\Os meus documentos\curso\manuel\satscan\popmanel.pop
Coordinates File : C:\Os meus documentos\curso\manuel\satscan\geomanel.geo

Precision of Times : Years
Coordinates : Latitude/Longitude

Analysis

Type of Analysis : Space-Time
Probability Model : Poisson
Scan for Areas with : High Rates
Start Date : 1994/1/1
End Date : 1999/12/31
Number of Replications : 999

Scanning Window

Maximum Spatial Cluster Size : 50.00
Also Include Purely Temporal Clusters : Yes
Maximum Temporal Cluster Size : 50.00
Also Include Purely Spatial Clusters : Yes
Clusters to Include : All

Time Parameters

Time Interval Units : Years
Time Interval Length : 1
Adjustment for Time Trend : None

Output

Results File : C:\Os meus documentos\curso\manuel\satscan\clustermanel.TXT
GIS File : C:\Os meus documentos\curso\manuel\satscan\clustermanel.gis
LLR File : C:\Os meus documentos\curso\manuel\satscan\clustermanel.llr

Total Running Time : 11 seconds
Program run on: Wed Feb 21 15:03:09 2001

Purely Spatial analysis scanning for clusters with high rates using the Poisson model.

SUMMARY OF DATA

Study period: 1994/1/1 - 1999/12/31
Number of census areas: 46
Total population: 1433
Total cases: 136
Annual cases / 100000.: 1581.9

MOST LIKELY CLUSTER

1. Census areas included.: F050503, F050505, F050501, F050509,
 F050504, F050215, F050511, F050213,
 F050216, F050517, F050514, F050506,
 F050508, F050207, F050512, F050502,
 F050208, F050516, F050214, F050515,
 F050211, F050201, F050513

Coordinates / radius.: (7.210 S, 39.880 E) / 28.91
Population............: 571
Number of cases.......: 113 (54.22 expected)
Annual cases / 100000.: 3297.2
Overall relative risk.: 2.084
Log likelihood ratio.: 53.811929
Monte Carlo rank......: 1/1000
P-value...............: 0.001

SECONDARY CLUSTERS

2. Census areas included.: F050209, F050224

Coordinates / radius.: (7.570 S, 39.930 E) / 4.41
Population............: 22
Number of cases.......: 5 (2.06 expected)
Annual cases / 100000.: 3847.2
Overall relative risk.: 2.432
Log likelihood ratio.: 1.532027
Monte Carlo rank......: 970/1000
P-value...............: 0.970
The log likelihood ratio value required for an observed cluster to be significant at level
... 0.01: 7.477931
... 0.05: 6.024419

<table>
<thead>
<tr>
<th>Census Area</th>
<th>Observed Cases</th>
<th>Expected Cases</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>F050201</td>
<td>6</td>
<td>3.21</td>
<td>1.868</td>
</tr>
<tr>
<td>F050202</td>
<td>0</td>
<td>1.83</td>
<td>0.000</td>
</tr>
<tr>
<td>F050203</td>
<td>0</td>
<td>4.51</td>
<td>0.000</td>
</tr>
<tr>
<td>F050204</td>
<td>1</td>
<td>0.79</td>
<td>1.264</td>
</tr>
<tr>
<td>F050205</td>
<td>3</td>
<td>7.67</td>
<td>0.391</td>
</tr>
<tr>
<td>F050206</td>
<td>0</td>
<td>0.57</td>
<td>0.000</td>
</tr>
<tr>
<td>F050207</td>
<td>2</td>
<td>2.12</td>
<td>0.943</td>
</tr>
<tr>
<td>F050208</td>
<td>0</td>
<td>1.44</td>
<td>0.000</td>
</tr>
<tr>
<td>F050209</td>
<td>2</td>
<td>0.93</td>
<td>2.143</td>
</tr>
<tr>
<td>F050210</td>
<td>2</td>
<td>1.91</td>
<td>1.045</td>
</tr>
<tr>
<td>F050211</td>
<td>21</td>
<td>4.27</td>
<td>4.916</td>
</tr>
<tr>
<td>F050212</td>
<td>1</td>
<td>4.65</td>
<td>0.215</td>
</tr>
<tr>
<td>F050213</td>
<td>1</td>
<td>1.09</td>
<td>0.916</td>
</tr>
<tr>
<td>F050214</td>
<td>3</td>
<td>3.46</td>
<td>0.866</td>
</tr>
<tr>
<td>F050215</td>
<td>0</td>
<td>2.43</td>
<td>0.000</td>
</tr>
<tr>
<td>F050216</td>
<td>13</td>
<td>2.77</td>
<td>4.697</td>
</tr>
<tr>
<td>F050217</td>
<td>0</td>
<td>1.20</td>
<td>0.000</td>
</tr>
<tr>
<td>F050218</td>
<td>0</td>
<td>1.50</td>
<td>0.000</td>
</tr>
<tr>
<td>F050219</td>
<td>0</td>
<td>1.17</td>
<td>0.000</td>
</tr>
<tr>
<td>F050220</td>
<td>0</td>
<td>1.20</td>
<td>0.000</td>
</tr>
<tr>
<td>F050221</td>
<td>0</td>
<td>1.91</td>
<td>0.000</td>
</tr>
<tr>
<td>F050222</td>
<td>4</td>
<td>5.83</td>
<td>0.686</td>
</tr>
<tr>
<td>F050223</td>
<td>0</td>
<td>10.83</td>
<td>0.000</td>
</tr>
<tr>
<td>F050224</td>
<td>3</td>
<td>1.12</td>
<td>2.672</td>
</tr>
<tr>
<td>F050225</td>
<td>0</td>
<td>0.81</td>
<td>0.000</td>
</tr>
<tr>
<td>F050501</td>
<td>3</td>
<td>1.58</td>
<td>1.897</td>
</tr>
<tr>
<td>F050502</td>
<td>7</td>
<td>1.41</td>
<td>4.970</td>
</tr>
<tr>
<td>F050503</td>
<td>8</td>
<td>4.97</td>
<td>1.610</td>
</tr>
<tr>
<td>F050504</td>
<td>0</td>
<td>0.32</td>
<td>0.000</td>
</tr>
<tr>
<td>F050505</td>
<td>5</td>
<td>3.39</td>
<td>1.477</td>
</tr>
<tr>
<td>F050506</td>
<td>2</td>
<td>0.76</td>
<td>2.634</td>
</tr>
<tr>
<td>F050507</td>
<td>0</td>
<td>1.38</td>
<td>0.000</td>
</tr>
<tr>
<td>F050508</td>
<td>7</td>
<td>3.50</td>
<td>2.001</td>
</tr>
<tr>
<td>F050509</td>
<td>3</td>
<td>3.70</td>
<td>0.811</td>
</tr>
<tr>
<td>F050510</td>
<td>2</td>
<td>1.87</td>
<td>1.071</td>
</tr>
<tr>
<td>F050511</td>
<td>1</td>
<td>1.14</td>
<td>0.878</td>
</tr>
<tr>
<td>F050512</td>
<td>18</td>
<td>3.94</td>
<td>4.570</td>
</tr>
<tr>
<td>F050513</td>
<td>4</td>
<td>1.09</td>
<td>3.665</td>
</tr>
</tbody>
</table>
For further study using a GIS or database program, an ASCII format GIS file has been created, describing the detected clusters. The name of this file is C:\Os meus documentos\curso\manuel\satscan\espacmanel.gis.

PARAMETER SETTINGS

Input Files

Case File : C:\Os meus documentos\curso\manuel\satscan\casmanel.cas
Population File : C:\Os meus documentos\curso\manuel\satscan\popmanel.pop
Coordinates File : C:\Os meus documentos\curso\manuel\satscan\geomanel.geo

Precision of Times : Years
Coordinates : Latitude/Longitude

Analysis

Type of Analysis : Purely Spatial
Probability Model : Poisson
Scan for Areas with : High Rates

Start Date : 1994/1/1
End Date : 1999/12/31

Number of Replications : 999

Scanning Window

Maximum Spatial Cluster Size : 50.00

Output

Results File : C:\Os meus documentos\curso\manuel\satscan\espacmanel.TXT
GIS File : C:\Os meus documentos\curso\manuel\satscan\espacmanel.gis
LLR File : C:\Os meus documentos\curso\manuel\satscan\espacmanel.llr
SUMMARY OF DATA

Study period: 1994/1/1 - 1999/12/31
Number of census areas: 46
Total population: 1433
Total cases: 136
Annual cases / 100000.: 1581.9

MOST LIKELY CLUSTER

1. Census areas included.: F050503, F050505, F050501, F050509,
 F050504, F050215, F050511, F050213,
 F050216, F050517, F050514, F050506,
 F050508, F050207, F050512, F050502,
 F050208, F050516, F050214, F050515,
 F050211, F050201, F050513
Coordinates / radius.: (7.210 S, 39.880 E) / 28.91
Population............: 571
Number of cases.......: 113 (54.22 expected)
Annual cases / 100000.: 3297.2
Overall relative risk.: 2.084
Log likelihood ratio.: 53.811929
Monte Carlo rank......: 1/1000
P-value................: 0.001

SECONDARY CLUSTERS

2. Census areas included.: F050209, F050224
 Coordinates / radius.: (7.570 S, 39.930 E) / 4.41
 Population............: 22
 Number of cases......: 5 (2.06 expected)
 Annual cases / 100000.: 3847.2
 Overall relative risk.: 2.432
 Log likelihood ratio.: 1.532027
 Monte Carlo rank......: 970/1000
P-value: 0.970

The log likelihood ratio value required for an observed cluster to be significant at level
... 0.01: 7.477931
... 0.05: 6.024419

<table>
<thead>
<tr>
<th>Census Area</th>
<th>Observed Cases</th>
<th>Expected Cases</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>F050201</td>
<td>6</td>
<td>3.21</td>
<td>1.868</td>
</tr>
<tr>
<td>F050202</td>
<td>0</td>
<td>1.83</td>
<td>0.000</td>
</tr>
<tr>
<td>F050203</td>
<td>0</td>
<td>4.51</td>
<td>0.000</td>
</tr>
<tr>
<td>F050204</td>
<td>1</td>
<td>0.79</td>
<td>1.264</td>
</tr>
<tr>
<td>F050205</td>
<td>3</td>
<td>7.67</td>
<td>0.391</td>
</tr>
<tr>
<td>F050206</td>
<td>0</td>
<td>0.57</td>
<td>0.000</td>
</tr>
<tr>
<td>F050207</td>
<td>2</td>
<td>2.12</td>
<td>0.943</td>
</tr>
<tr>
<td>F050208</td>
<td>0</td>
<td>1.44</td>
<td>0.000</td>
</tr>
<tr>
<td>F050209</td>
<td>2</td>
<td>0.93</td>
<td>2.143</td>
</tr>
<tr>
<td>F050210</td>
<td>2</td>
<td>1.91</td>
<td>1.045</td>
</tr>
<tr>
<td>F050211</td>
<td>21</td>
<td>4.27</td>
<td>4.916</td>
</tr>
<tr>
<td>F050212</td>
<td>1</td>
<td>4.65</td>
<td>0.215</td>
</tr>
<tr>
<td>F050213</td>
<td>1</td>
<td>1.09</td>
<td>0.916</td>
</tr>
<tr>
<td>F050214</td>
<td>3</td>
<td>3.46</td>
<td>0.866</td>
</tr>
<tr>
<td>F050215</td>
<td>0</td>
<td>2.43</td>
<td>0.000</td>
</tr>
<tr>
<td>F050216</td>
<td>13</td>
<td>2.77</td>
<td>4.697</td>
</tr>
<tr>
<td>F050217</td>
<td>0</td>
<td>1.20</td>
<td>0.000</td>
</tr>
<tr>
<td>F050218</td>
<td>0</td>
<td>1.50</td>
<td>0.000</td>
</tr>
<tr>
<td>F050219</td>
<td>0</td>
<td>1.17</td>
<td>0.000</td>
</tr>
<tr>
<td>F050220</td>
<td>0</td>
<td>1.20</td>
<td>0.000</td>
</tr>
<tr>
<td>F050221</td>
<td>0</td>
<td>1.91</td>
<td>0.000</td>
</tr>
<tr>
<td>F050222</td>
<td>4</td>
<td>5.83</td>
<td>0.686</td>
</tr>
<tr>
<td>F050223</td>
<td>0</td>
<td>10.83</td>
<td>0.000</td>
</tr>
<tr>
<td>F050224</td>
<td>3</td>
<td>1.12</td>
<td>2.672</td>
</tr>
<tr>
<td>F050225</td>
<td>0</td>
<td>0.81</td>
<td>0.000</td>
</tr>
<tr>
<td>F050501</td>
<td>3</td>
<td>1.58</td>
<td>1.897</td>
</tr>
<tr>
<td>F050502</td>
<td>7</td>
<td>1.41</td>
<td>4.970</td>
</tr>
<tr>
<td>F050503</td>
<td>8</td>
<td>4.97</td>
<td>1.610</td>
</tr>
<tr>
<td>F050504</td>
<td>0</td>
<td>0.32</td>
<td>0.000</td>
</tr>
<tr>
<td>F050505</td>
<td>5</td>
<td>3.39</td>
<td>1.477</td>
</tr>
<tr>
<td>F050506</td>
<td>2</td>
<td>0.76</td>
<td>2.634</td>
</tr>
<tr>
<td>F050507</td>
<td>0</td>
<td>1.38</td>
<td>0.000</td>
</tr>
<tr>
<td>F050508</td>
<td>7</td>
<td>3.50</td>
<td>2.001</td>
</tr>
<tr>
<td>F050509</td>
<td>3</td>
<td>3.70</td>
<td>0.811</td>
</tr>
<tr>
<td>F050510</td>
<td>2</td>
<td>1.87</td>
<td>1.071</td>
</tr>
<tr>
<td>F050511</td>
<td>1</td>
<td>1.14</td>
<td>0.878</td>
</tr>
<tr>
<td>F050512</td>
<td>18</td>
<td>3.94</td>
<td>4.570</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>F050513</td>
<td>4</td>
<td>1.09</td>
<td>3.665</td>
</tr>
<tr>
<td>F050514</td>
<td>2</td>
<td>2.85</td>
<td>0.702</td>
</tr>
<tr>
<td>F050515</td>
<td>1</td>
<td>1.14</td>
<td>0.878</td>
</tr>
<tr>
<td>F050516</td>
<td>0</td>
<td>1.04</td>
<td>0.000</td>
</tr>
<tr>
<td>F050517</td>
<td>6</td>
<td>2.59</td>
<td>2.313</td>
</tr>
<tr>
<td>F051101</td>
<td>2</td>
<td>6.88</td>
<td>0.291</td>
</tr>
<tr>
<td>F051102</td>
<td>2</td>
<td>6.82</td>
<td>0.293</td>
</tr>
<tr>
<td>F051103</td>
<td>1</td>
<td>5.49</td>
<td>0.182</td>
</tr>
<tr>
<td>F051104</td>
<td>0</td>
<td>10.91</td>
<td>0.000</td>
</tr>
</tbody>
</table>

For further study using a GIS or database program, an ASCII format GIS file has been created, describing the detected clusters. The name of this file is C:\Os meus documentos\curso\manuel\satscan\espacmanel.gis.

PARAMETER SETTINGS

Input Files

Case File : C:\Os meus documentos\curso\manuel\satscan\casmanel.cas
Population File : C:\Os meus documentos\curso\manuel\satscan\popmanel.pop
Coordinates File : C:\Os meus documentos\curso\manuel\satscan\geomanel.geo

Precision of Times : Years
Coordinates : Latitude/Longitude

Analysis

Type of Analysis : Purely Spatial
Probability Model : Poisson
Scan for Areas with : High Rates

Start Date : 1994/1/1
End Date : 1999/12/31

Number of Replications : 999

Scanning Window

Maximum Spatial Cluster Size : 50.00

Output

Results File : C:\Os meus documentos\curso\manuel\satscan\espacmanel.TXT
GIS File : C:\Os meus documentos\curso\manuel\satscan\espacmanel.gis
LLR File : C:\Os meus documentos\curso\manuel\satscan\espacmanel.llr

Program completed : Wed Feb 21 15:03:12 2001
Total Running Time : 3 seconds
Anexo III

Teste Kappa
Teste Kappa (Win Episcope 2.0)

Teste Kappa: Rosa Bengala e Fixação do Complemento (Rebanhos Indemnes)

<table>
<thead>
<tr>
<th>Alternative Test (Rosa Bengala)</th>
<th>Standard Test (Fixação do Complemento)</th>
<th>Level of Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>a</td>
<td>288</td>
<td>949</td>
</tr>
<tr>
<td>b</td>
<td>57</td>
<td>14966</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>345</td>
</tr>
</tbody>
</table>

Results:

- Observed proportion of agreement: 0.938
- Kappa: 0.342
- Level of Confidence: 0.016
- Expected proportion of agreement: 0.906
- Significance of Kappa using se(:) = 0.094
- se(1): 0.006
- Max. Possible agreement: 0.094
- T-value: 53.728
- Lower Limited: 0.31
- Upper Limited: 0.374

Teste Kappa: Rosa Bengala e Fixação do Complemento (Rebanhos Infectados)

<table>
<thead>
<tr>
<th>Alternative Test (Rosa Bengala)</th>
<th>Standard Test (Fixação do Complemento)</th>
<th>Level of Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>a</td>
<td>1420</td>
<td>462</td>
</tr>
<tr>
<td>b</td>
<td>681</td>
<td>18327</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2101</td>
</tr>
</tbody>
</table>

Results:

- Observed proportion of agreement: 0.945
- Kappa: 0.683
- Level of Confidence: 0.009
- Expected proportion of agreement: 0.827
- Significance of Kappa using se(:) = 0.118
- se(1): 0.007
- Max. Possible agreement: 0.173
- T-value: 98.883
- Lower Limited: 0.666
- Upper Limited: 0.7
<table>
<thead>
<tr>
<th>Alternative Test (Rosa Bengala)</th>
<th>Standard Test (Fixação do Complemento)</th>
<th>Level of Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>a</td>
<td>1708</td>
<td>1411</td>
</tr>
<tr>
<td>b</td>
<td>738</td>
<td>33293</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2446</td>
<td>34704</td>
</tr>
</tbody>
</table>

Results:

- Observed proportion of agreement: 0.942
- Expected proportion of agreement: 0.861
- Observed minus chance of agreement: 0.081
- Max. Possible agreement. Beyond chance: 0.139

Kappa: 0.583

Significance of Kappa using se(-):
- se(0): 0.005
- T-value: 113.35

Level of Confidence
- Lower Limited: 0.567
- Upper Limited: 0.599
Anexo IV

Inquérito epidemiológico (questionário)
Amostragem
Correlação de Pearson
Análise de regressão multivariável
INQUÉRITO ÀS EXPLORAÇÕES DE PEQUENOS RUMINANTES (OVIBEIRA)

<table>
<thead>
<tr>
<th>Identificação</th>
<th>Data ___ / ___ / ___</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome</td>
<td></td>
</tr>
<tr>
<td>Locais da exploração</td>
<td></td>
</tr>
<tr>
<td>Freguesias</td>
<td></td>
</tr>
<tr>
<td>Sociedade S N</td>
<td>Sócio do ADS S N</td>
</tr>
<tr>
<td>Número de Anos com Peq. Rum.,__________</td>
<td></td>
</tr>
</tbody>
</table>

Principais Actividades (Assinalar com uma cruz X)

Leite _____	Vende S N
Queijo ____	Cura S N
	Venda (±8 dias) S N
Carne _____	Vende dos borregos para abate S N
	Idade/Peso________
Qual o destino que dá ao soro do leite? ________________________________	

Estratificação do Efectivo Pecuário (Número)

Ovelhas _____	Cabras
Carneiros ____	Bodes
Bovinos S N	Malatas/Borregos Subst _____
Chibas Subst ______	Suínos S N
Malatos/Borregos Subst _____	Chibos Subst ______
Cães de rebanho ______	

Animais cinegéticos: Javali S N Lebres/Coelhos S N Veados S N

Raposas S N Aves S N Está inserido em zona de caça S N

Área de exploração, instalações

Área Total _______	Pastos contínuos S N	
Distância máxima (se não forem contínuos) _______	Km	
São todos na mesma freguesia S N	Sequeiro S N	Regadio S N
Os pastos são todos aramados/murados S N
Ha pastos comuns a outros rebanhos S N
Tem problemas com a entrada de animais dos vizinhos nos seus pastos S N
Os seus animais passam para os pastos dos vizinhos S N
Em algum local os rebanhos vizinhos tem facilidade de passar para os seus pastos S N
Usa caminhos comuns a outros rebanhos S N
Ha locais de abeberamento comuns a outros rebanhos S N

Comprovou/alugou pastos no último ano S N Tinharam animais S N
Comprovou-os S N
Pensa adquirir pastos S N Se tiver de comprar com animais, compra? S N

Tem Ovil/Cabril S N Tipo de cama: Palha Terra Outra:__________
Destino das Camas ____________________________
Frequência de remoção das camas: Diária Semanal Quinzenal Mensal
Outra: ______
Usa bardos S N

Manejo Reprodutivo do Rebanho

Épocas de Parição JFMAMJJASOND

Abortos S N Nado Mortos S N Mortes na 1ª semana de vida S N
Separa as fêmeas no parto S N Individual ou em Grupo (sublinhar)
Tem local próprio para as parições S N Onde? __________________________
Quanto tempo ficam as fêmeas separadas ______
Vão para a pastagem com as outras durante o dia S N
Locais de Parição: Pasto S N Ovil/Cabril S N Bardo S N
Outro ______________
As fêmeas que abortam são novamente cobertas S N
Deixa fêmeas de outros rebanhos entrar na exploração para cobrição S N
Leva as suas fêmeas a outros rebanhos para serem cobertas S N
Deixa machos emprestados cobrirem as fêmeas do seu rebanho S N
Empresta os seus machos para cobrição S N
Destino das secundinas e abortos ____________________________
Limpa o local de parição ou de aborto S N Com Água S N
Com Desinfectante S N
Quanto tempo ficam os borregos(as) de substituição com as mães ____________

Saneamento (Brucelose)

Saneia os animais todos os anos S N
Já teve brucelose no seu rebanho S N Teve machos com brucelose S N
Último ano com brucelose __________
A colheita é feita na sua exploração S N Em concentração (Edital) S N
Separa os animais positivos S N
Se uma fêmea for positiva e estiver prenhe, pretende separá-la S N
E abatê-la antes do parto S N

Pastores

Nº de pastores ______ Alguns tem gado S N Esse gado é saneado S N
É saneado no nome do pastor S N
Se tiver de contratar um pastor com gado, deixa-o misturar os animais
com os seus S N
Faz alguma exigência em relação ao gado do pastor S N
Qual ? __________________________
Se o pastor se for embora, leva o gado S N

Compra e venda de animais

Compra animais S N
Machos S N Fêmeas S N Adultas S N Jovens S N
Locais de compra: Vizinhos S N Feira S N Mercado S N
Outras regiões (fora da área da Ovibeira) S N Comerciante de gado S N
Importação S N Outro local: __________________________
Já comprou um rebanho inteiro (ou grande parte) de outro produtor S N
Exige colheita de sangue antes da compra S N
Na exploração de origem S N Na sua exploração S N
Exige saber quando foram saneados S N
Exige certificado sanitário S N Guias de trânsito S N
Exige saber a classificação sanitária S N
Pede apoio ao M. Veterinário S N
Não faz qualquer exigência S
Faz quarentena S N Quanto tempo
Tem registo de entrada e saída de animais S N
Quando compra ou vende dá conhecimento ao ADS ou à DRABI S N Às vezes

Vende animais para substituição S N
Vende fêmeas prenhes ou com o borrego S N
Vende fêmeas que tenham abortado S N
Vende os animais não saneados S N
Ou com saneamento feito à mais de 6 meses S N
Conhece a classificação sanitária do seu rebanho S N Qual é ?
Se a exploração estiver em sequestro pode vender ou comprar animais S N Não sabe

Brucelose Humana

Bebe leite fresco da exploração S N
Come queijo fresco S N E de outra exploração S N
Vende queijo fresco S N
Come queijo sem estar totalmente curado S N
Já alguém sofreu de brucelose na exploração S N
Amostragem utilizada no estudo efectuado
(Epi-Info: 6.04)

Unmatched Case-Control Study (Comparison of ILL and NOT ILL)
Sample Sizes for 50.00 % Exposure in NOT ILL Group

<table>
<thead>
<tr>
<th>Conf.</th>
<th>Power</th>
<th>NOT ILL:ILL</th>
<th>Exposure Odds in ILL</th>
<th>Ratio</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95.00 %</td>
<td>80.00 %</td>
<td>1:1</td>
<td>75.00 %</td>
<td>3.00</td>
</tr>
<tr>
<td>90.00 %</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>53</td>
</tr>
<tr>
<td>95.00 %</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>65</td>
</tr>
<tr>
<td>99.00 %</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>94</td>
</tr>
<tr>
<td>99.90 %</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>134</td>
</tr>
<tr>
<td>95.00 %</td>
<td>80.00 %</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>65</td>
</tr>
<tr>
<td>"</td>
<td>90.00 %</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>85</td>
</tr>
<tr>
<td>"</td>
<td>95.00 %</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>102</td>
</tr>
<tr>
<td>"</td>
<td>99.00 %</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>141</td>
</tr>
<tr>
<td>"</td>
<td>80.00 %</td>
<td>4:1</td>
<td>"</td>
<td>"</td>
<td>164</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>3:1</td>
<td>"</td>
<td>"</td>
<td>132</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>2:1</td>
<td>"</td>
<td>"</td>
<td>100</td>
</tr>
<tr>
<td>"</td>
<td>1:2</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>48</td>
</tr>
<tr>
<td>"</td>
<td>1:3</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>42</td>
</tr>
<tr>
<td>"</td>
<td>1:4</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>39</td>
</tr>
</tbody>
</table>

Fórmula: \[m' = \frac{\text{Sq}\{c(a/2)\cdot\text{Sqrt}\{(r+1)\cdot PQ\} - c(1-b)\cdot \text{Sqrt}\{r\cdot P1\cdot Q1 + P2\cdot Q2\}\}}{r\cdot \text{Sq}\{P2-P1\}}\]
\[m = 0.25\cdot \text{Sq}\{1 + \text{Sqrt}\{1 + 2\cdot (r+1)/(m'\cdot \text{Abs}\{P2-P1\})\}\}\]

<table>
<thead>
<tr>
<th>Factor de Risco</th>
<th>Abortos</th>
<th>ÁreaTotal</th>
<th>Bardo</th>
<th>Bardos</th>
<th>Cães 02</th>
<th>Carneiros</th>
<th>Entradade</th>
<th>Fêmeas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORTO</td>
<td>Correlação de Person</td>
<td>0.2495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.0256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREA TOTAL</td>
<td>Correlação de Person</td>
<td>0.1303</td>
<td>0.4243</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.2492</td>
<td>0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARDO</td>
<td>Correlação de Person</td>
<td>0.2548</td>
<td>0.3220</td>
<td>0.5115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.0225</td>
<td>0.0036</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARDOS</td>
<td>Correlação de Person</td>
<td>0.3506</td>
<td>0.3819</td>
<td>0.1381</td>
<td>0.189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.0014</td>
<td>0.0005</td>
<td>0.2219</td>
<td>0.2268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CÃES02</td>
<td>Correlação de Person</td>
<td>0.2800</td>
<td>0.7011</td>
<td>0.3463</td>
<td>0.0431</td>
<td>0.4045</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.0119</td>
<td>0.0000</td>
<td>0.0016</td>
<td>0.0003</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARNEIROS</td>
<td>Correlação de Person</td>
<td>0.3527</td>
<td>0.3026</td>
<td>0.2668</td>
<td>0.2219</td>
<td>0.2135</td>
<td>0.3958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.0013</td>
<td>0.0064</td>
<td>0.0167</td>
<td>0.0479</td>
<td>0.0572</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>ENTRADADE</td>
<td>Correlação de Person</td>
<td>0.0976</td>
<td>-0.1024</td>
<td>-0.0018</td>
<td>-0.0746</td>
<td>0.0658</td>
<td>-0.0266</td>
<td>0.1018</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.3891</td>
<td>0.3659</td>
<td>0.9872</td>
<td>0.5107</td>
<td>0.5620</td>
<td>0.8147</td>
<td>0.3687</td>
</tr>
<tr>
<td>FEMEAS</td>
<td>Correlação de Person</td>
<td>0.0237</td>
<td>0.0464</td>
<td>-0.0201</td>
<td>-0.0284</td>
<td>0.1254</td>
<td>-0.1318</td>
<td>-0.0522</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.8350</td>
<td>0.6828</td>
<td>0.8597</td>
<td>0.8023</td>
<td>0.2679</td>
<td>0.2437</td>
<td>0.6457</td>
</tr>
<tr>
<td>MR</td>
<td>Correlação de Person</td>
<td>0.7165</td>
<td>0.1499</td>
<td>0.1614</td>
<td>0.2698</td>
<td>0.2908</td>
<td>0.2531</td>
<td>0.3259</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.0000</td>
<td>0.1846</td>
<td>0.1528</td>
<td>0.0155</td>
<td>0.0089</td>
<td>0.0235</td>
<td>0.0032</td>
</tr>
<tr>
<td>NADOMORTO</td>
<td>Correlação de Person</td>
<td>0.2752</td>
<td>0.4330</td>
<td>0.1705</td>
<td>0.1810</td>
<td>0.4284</td>
<td>0.5946</td>
<td>0.2892</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.0135</td>
<td>0.0001</td>
<td>0.1305</td>
<td>0.1082</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0093</td>
</tr>
<tr>
<td>NUMERODEP</td>
<td>Correlação de Person</td>
<td>-0.044</td>
<td>0.1183</td>
<td>0.2276</td>
<td>0.2881</td>
<td>0.1089</td>
<td>0.1224</td>
<td>0.0329</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.6980</td>
<td>0.2958</td>
<td>0.0423</td>
<td>0.0996</td>
<td>0.3363</td>
<td>0.2796</td>
<td>0.7178</td>
</tr>
<tr>
<td>OVELHAS</td>
<td>Correlação de Person</td>
<td>0.2796</td>
<td>0.6684</td>
<td>0.4370</td>
<td>0.4617</td>
<td>0.4261</td>
<td>0.7623</td>
<td>0.3745</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.0120</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

Tabela n.° 76 - Matrix de Correlação de Pearson
<table>
<thead>
<tr>
<th>Factor de Risco</th>
<th>Abortos</th>
<th>AreaTotal</th>
<th>Bardo</th>
<th>Bardos</th>
<th>Cães 02</th>
<th>Carneiros</th>
<th>Entraadad</th>
<th>Fêmeas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTO</td>
<td>Correlação de Person</td>
<td>0,1133</td>
<td>0,2430</td>
<td>0,1943</td>
<td>0,1505</td>
<td>-0,0442</td>
<td>0,0775</td>
<td>0,1629</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,3168</td>
<td>0,0299</td>
<td>0,0842</td>
<td>0,1827</td>
<td>0,6968</td>
<td>0,4942</td>
<td>0,1487</td>
</tr>
<tr>
<td>SABEASUAC</td>
<td>Correlação de Person</td>
<td>-0,0205</td>
<td>0,2332</td>
<td>0,1802</td>
<td>0,1338</td>
<td>0,0000</td>
<td>0,1841</td>
<td>0,0513</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,8571</td>
<td>0,0373</td>
<td>0,1098</td>
<td>0,2367</td>
<td>1,0000</td>
<td>0,1021</td>
<td>0,6514</td>
</tr>
<tr>
<td>SEPARAASF</td>
<td>Correlação de Person</td>
<td>0,3069</td>
<td>0,5303</td>
<td>0,3478</td>
<td>0,3632</td>
<td>0,3034</td>
<td>0,6751</td>
<td>0,3212</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,0056</td>
<td>0,0000</td>
<td>0,0016</td>
<td>0,0009</td>
<td>0,0062</td>
<td>0,0000</td>
<td>0,0037</td>
</tr>
<tr>
<td>SEQUESTROP</td>
<td>Correlação de Person</td>
<td>0,1220</td>
<td>0,3218</td>
<td>0,1471</td>
<td>0,1140</td>
<td>0,1508</td>
<td>0,2575</td>
<td>0,1770</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,2811</td>
<td>0,0036</td>
<td>0,1928</td>
<td>0,3142</td>
<td>0,1819</td>
<td>0,0211</td>
<td>0,1162</td>
</tr>
<tr>
<td>TERRA</td>
<td>Correlação de Person</td>
<td>0,2807</td>
<td>0,0737</td>
<td>-0,0899</td>
<td>0,1816</td>
<td>0,1068</td>
<td>-0,0504</td>
<td>-0,0313</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,0117</td>
<td>0,5159</td>
<td>0,4276</td>
<td>0,1070</td>
<td>0,4359</td>
<td>0,6572</td>
<td>0,7826</td>
</tr>
<tr>
<td>VEADOS</td>
<td>Correlação de Person</td>
<td>0,0881</td>
<td>0,2662</td>
<td>0,1279</td>
<td>0,1396</td>
<td>0,2557</td>
<td>0,3435</td>
<td>0,0500</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,4371</td>
<td>0,0170</td>
<td>0,2582</td>
<td>0,2168</td>
<td>0,0221</td>
<td>0,7614</td>
<td>0,6593</td>
</tr>
<tr>
<td>DEZ</td>
<td>Correlação de Person</td>
<td>0,2202</td>
<td>0,0839</td>
<td>-0,0113</td>
<td>0,0000</td>
<td>0,1531</td>
<td>-0,0550</td>
<td>0,0327</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,0497</td>
<td>0,4591</td>
<td>0,9209</td>
<td>1,0000</td>
<td>0,1752</td>
<td>0,6277</td>
<td>0,7735</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor de Risco</th>
<th>Mr</th>
<th>Nadomorto</th>
<th>Numerodep</th>
<th>Out</th>
<th>Ovelhas</th>
<th>Pasto</th>
<th>Sabeasuas</th>
<th>Separasaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADOMORNO</td>
<td>Correlação de Person</td>
<td>-0,0258</td>
<td>0,8200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMERODEP</td>
<td>Correlação de Person</td>
<td>0,4121</td>
<td>0,2764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,2085</td>
<td>0,0131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT</td>
<td>Correlação de Person</td>
<td>0,2248</td>
<td>-0,0221</td>
<td>0,0595</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,0450</td>
<td>0,8459</td>
<td>0,6004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVELHAS</td>
<td>Correlação de Person</td>
<td>-0,1640</td>
<td>0,1855</td>
<td>0,5262</td>
<td>0,1743</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,8853</td>
<td>0,0995</td>
<td>0,0000</td>
<td>0,1221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASTO</td>
<td>Correlação de Person</td>
<td>0,1098</td>
<td>0,0339</td>
<td>0,0056</td>
<td>0,1333</td>
<td>0,1169</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,3323</td>
<td>0,7652</td>
<td>0,9609</td>
<td>0,2386</td>
<td>0,3018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABEASUAC</td>
<td>Correlação de Person</td>
<td>0,3411</td>
<td>0,0254</td>
<td>0,3504</td>
<td>-0,0496</td>
<td>0,1192</td>
<td>0,1812</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,0020</td>
<td>0,8230</td>
<td>0,0014</td>
<td>0,6624</td>
<td>0,2921</td>
<td>0,1077</td>
<td></td>
</tr>
<tr>
<td>SEPARAASF</td>
<td>Correlação de Person</td>
<td>-0,0647</td>
<td>0,1858</td>
<td>0,5033</td>
<td>0,5790</td>
<td>0,0917</td>
<td>0,2327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0,5688</td>
<td>0,0989</td>
<td>0,0000</td>
<td>0,3906</td>
<td>0,0000</td>
<td>0,4184</td>
<td>0,0378</td>
</tr>
</tbody>
</table>

Continuação da Tabela n.º 76 - Matriz de Correlação de Pearson
<table>
<thead>
<tr>
<th>Factor de Risco</th>
<th>Mr</th>
<th>Ndomorrio</th>
<th>Numerodep</th>
<th>Out</th>
<th>Ovelhas</th>
<th>Pasto</th>
<th>Suicasua</th>
<th>Separausf</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQUESTRO</td>
<td>0.3855</td>
<td>0.2205</td>
<td>0.3419</td>
<td>0.1496</td>
<td>0.1456</td>
<td>0.2534</td>
<td>0.5947</td>
<td>0.2897</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0004</td>
<td>0.0493</td>
<td>0.0019</td>
<td>0.1854</td>
<td>0.1975</td>
<td>0.0233</td>
<td>0.0000</td>
<td>0.0091</td>
</tr>
<tr>
<td>TERRA</td>
<td>0.2128</td>
<td>0.2385</td>
<td>0.1950</td>
<td>0.1223</td>
<td>0.0500</td>
<td>0.1204</td>
<td>0.1647</td>
<td>0.0567</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0581</td>
<td>0.0332</td>
<td>0.0830</td>
<td>0.2808</td>
<td>0.6593</td>
<td>0.2873</td>
<td>0.1444</td>
<td>0.6175</td>
</tr>
<tr>
<td>VEADOS</td>
<td>-0.0406</td>
<td>0.0548</td>
<td>-0.0107</td>
<td>0.0732</td>
<td>0.1622</td>
<td>-0.0163</td>
<td>-0.0043</td>
<td>0.1681</td>
</tr>
<tr>
<td>P-value</td>
<td>0.7207</td>
<td>0.6291</td>
<td>0.9247</td>
<td>0.5187</td>
<td>0.1505</td>
<td>0.8856</td>
<td>0.9697</td>
<td>0.1361</td>
</tr>
<tr>
<td>DEZ</td>
<td>0.2968</td>
<td>-0.0108</td>
<td>0.2572</td>
<td>0.0445</td>
<td>0.0348</td>
<td>0.1084</td>
<td>0.1239</td>
<td>0.0723</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0075</td>
<td>0.9243</td>
<td>0.0213</td>
<td>0.6954</td>
<td>0.7593</td>
<td>0.3387</td>
<td>0.2736</td>
<td>0.5241</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor de Risco</th>
<th>Sequestrop</th>
<th>Terra</th>
<th>Veados</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERRA</td>
<td>0.0376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td>0.7409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEADOS</td>
<td>0.0828</td>
<td>0.1926</td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td>0.4653</td>
<td>0.8070</td>
<td></td>
</tr>
<tr>
<td>DEZ</td>
<td>0.0821</td>
<td>0.3487</td>
<td>-0.0928</td>
</tr>
<tr>
<td>P-value</td>
<td>0.4693</td>
<td>0.0015</td>
<td>0.4130</td>
</tr>
</tbody>
</table>

Continuação da Tabela n.º 76 - Matrix de Correlação de Pearson
<table>
<thead>
<tr>
<th>Aberto</th>
<th>Ocorrência de abortos na exploração</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área Total</td>
<td>Área Total da Exploração</td>
</tr>
<tr>
<td>Bardo</td>
<td>Tem bardo</td>
</tr>
<tr>
<td>Bardo</td>
<td>Local de parto - Bardo</td>
</tr>
<tr>
<td>Cães 01</td>
<td>Cães com acesso às secundinas</td>
</tr>
<tr>
<td>Cães 02</td>
<td>Número de Cães de Rebanhos</td>
</tr>
<tr>
<td>Carnetos</td>
<td>Número de Carnetos na exploração</td>
</tr>
<tr>
<td>Entrada</td>
<td>Entrada de pequenos ruminantes na exploração, de explorações vizinhas</td>
</tr>
<tr>
<td>Fêmeas</td>
<td>Compra de fêmeas adultas</td>
</tr>
<tr>
<td>Mr</td>
<td>Partos durante o mês de Março</td>
</tr>
<tr>
<td>Nado morto</td>
<td>Ocorrência de Nado-mortos na exploração</td>
</tr>
<tr>
<td>Númerodep</td>
<td>Número de Pastores no rebanho</td>
</tr>
<tr>
<td>Out</td>
<td>Partos durante o mês de Outubro</td>
</tr>
<tr>
<td>Ovelhas</td>
<td>Número de Ovelhas</td>
</tr>
<tr>
<td>Pasto</td>
<td>Local de parto - Pastagem</td>
</tr>
<tr>
<td>Sabeasuc</td>
<td>Sabe a Classificação Sanitária atribuída à exploração</td>
</tr>
<tr>
<td>Separaasf</td>
<td>Separa as fêmeas na altura do parto</td>
</tr>
<tr>
<td>Sequestrop</td>
<td>Se o rebanho estiver em sequestro, pode ou não vender e comprar animais</td>
</tr>
<tr>
<td>Terra</td>
<td>Camas com piso de Terra</td>
</tr>
<tr>
<td>Veia</td>
<td>Presença de Veia na área da exploração</td>
</tr>
<tr>
<td>Dez</td>
<td>Partos durante o mês de Dezembro</td>
</tr>
</tbody>
</table>

Tabela n.º 77 - Factores estudados
Logistic Regression

Case Processing Summary

<table>
<thead>
<tr>
<th>Unweighted Cases</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Cases</td>
<td>80</td>
<td>53.3</td>
</tr>
<tr>
<td>Missing Cases</td>
<td>70</td>
<td>46.7</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
</tr>
<tr>
<td>Unselected Cases</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

<table>
<thead>
<tr>
<th>Original Value</th>
<th>Internal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Block 0: Beginning Block

Classification Table

<table>
<thead>
<tr>
<th>Predicted</th>
<th>INFECTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed</th>
<th>INFECTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Overall Percentage
Classification Table\(^a,\(^b\)

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td></td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0 100.0</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>71.3</td>
</tr>
</tbody>
</table>

\(^a\) Constant is included in the model.

\(^b\) The cut value is .500

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-.908</td>
<td>.247</td>
<td>13.498</td>
<td>1</td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.000</td>
<td>.404</td>
</tr>
</tbody>
</table>

Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 0</th>
<th>Variables</th>
<th>Score</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OVELHAS</td>
<td>5.138</td>
<td>1</td>
<td>.023</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>1.961</td>
<td>1</td>
<td>.161</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>3.456</td>
<td>1</td>
<td>.063</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>4.672</td>
<td>1</td>
<td>.031</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>2.406</td>
<td>1</td>
<td>.121</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>4.465</td>
<td>1</td>
<td>.034</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>4.128</td>
<td>1</td>
<td>.042</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>1.540</td>
<td>1</td>
<td>.215</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>2.444</td>
<td>1</td>
<td>.118</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>8.328</td>
<td>1</td>
<td>.004</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>11.252</td>
<td>1</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>3.868</td>
<td>1</td>
<td>.049</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>1.704</td>
<td>1</td>
<td>.192</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td>24.878</td>
<td>13</td>
<td>.024</td>
</tr>
</tbody>
</table>

Block 1: Method = Backward Stepwise (Wald)
Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29,811</td>
<td>13</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>29,811</td>
<td>13</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>29,811</td>
<td>13</td>
<td>.005</td>
</tr>
<tr>
<td>2a</td>
<td>29,810</td>
<td>12</td>
<td>.003</td>
</tr>
<tr>
<td></td>
<td>29,810</td>
<td>12</td>
<td>.003</td>
</tr>
<tr>
<td></td>
<td>29,808</td>
<td>11</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>29,808</td>
<td>11</td>
<td>.002</td>
</tr>
<tr>
<td>3a</td>
<td>-1.144</td>
<td>1</td>
<td>.704</td>
</tr>
<tr>
<td></td>
<td>29,664</td>
<td>10</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>29,664</td>
<td>10</td>
<td>.001</td>
</tr>
<tr>
<td>4a</td>
<td>-.309</td>
<td>1</td>
<td>.578</td>
</tr>
<tr>
<td></td>
<td>29,355</td>
<td>9</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>29,355</td>
<td>9</td>
<td>.001</td>
</tr>
<tr>
<td>5a</td>
<td>-.330</td>
<td>1</td>
<td>.566</td>
</tr>
<tr>
<td></td>
<td>29,025</td>
<td>8</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>29,025</td>
<td>8</td>
<td>.000</td>
</tr>
<tr>
<td>6a</td>
<td>-.479</td>
<td>1</td>
<td>.489</td>
</tr>
<tr>
<td></td>
<td>28,546</td>
<td>7</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>28,546</td>
<td>7</td>
<td>.000</td>
</tr>
<tr>
<td>7a</td>
<td>-.589</td>
<td>1</td>
<td>.443</td>
</tr>
<tr>
<td></td>
<td>27,957</td>
<td>6</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>27,957</td>
<td>6</td>
<td>.000</td>
</tr>
<tr>
<td>8a</td>
<td>-.801</td>
<td>1</td>
<td>.371</td>
</tr>
<tr>
<td></td>
<td>27,155</td>
<td>5</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>27,155</td>
<td>5</td>
<td>.000</td>
</tr>
<tr>
<td>9a</td>
<td>-2.389</td>
<td>1</td>
<td>.122</td>
</tr>
<tr>
<td></td>
<td>24,766</td>
<td>4</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>24,766</td>
<td>4</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. A negative Chi-squares value indicates that the Chi-squares value has decreased from the previous step.

Model Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox & Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66,173</td>
<td>.311</td>
<td>.445</td>
</tr>
<tr>
<td>2</td>
<td>66,173</td>
<td>.311</td>
<td>.445</td>
</tr>
<tr>
<td>3</td>
<td>66,176</td>
<td>.311</td>
<td>.445</td>
</tr>
<tr>
<td>4</td>
<td>66,320</td>
<td>.310</td>
<td>.443</td>
</tr>
<tr>
<td>5</td>
<td>66,628</td>
<td>.307</td>
<td>.440</td>
</tr>
<tr>
<td>6</td>
<td>66,958</td>
<td>.304</td>
<td>.435</td>
</tr>
<tr>
<td>7</td>
<td>67,437</td>
<td>.300</td>
<td>.429</td>
</tr>
<tr>
<td>8</td>
<td>68,027</td>
<td>.295</td>
<td>.422</td>
</tr>
<tr>
<td>9</td>
<td>68,828</td>
<td>.288</td>
<td>.412</td>
</tr>
<tr>
<td>10</td>
<td>71,217</td>
<td>.266</td>
<td>.381</td>
</tr>
</tbody>
</table>
Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>INFEKTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Step 1</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>INFEKTADO</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>INFEKTADO</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Classification Table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>80.0</td>
</tr>
<tr>
<td>Step 2</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>80.0</td>
</tr>
<tr>
<td>Step 3</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>80.0</td>
</tr>
<tr>
<td>Step 4</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>81.3</td>
</tr>
<tr>
<td>Step 5</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>78.8</td>
</tr>
<tr>
<td>Step 6</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>78.8</td>
</tr>
<tr>
<td>Step 7</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>78.8</td>
</tr>
<tr>
<td>Step 8</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>80.0</td>
</tr>
<tr>
<td>Step 9</td>
<td>87.7</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>77.5</td>
</tr>
<tr>
<td>Step 10</td>
<td>91.2</td>
</tr>
<tr>
<td>INFECTADO</td>
<td>0</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>77.5</td>
</tr>
</tbody>
</table>

a. The cut value is .500
Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OVELHAS</td>
<td>0.431</td>
<td>1.171</td>
<td>0.136</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARROS</td>
<td>-0.074</td>
<td>1.575</td>
<td>0.002</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>1.000</td>
<td>0.749</td>
<td>1.784</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>0.889</td>
<td>0.646</td>
<td>1.892</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>1.101</td>
<td>1.450</td>
<td>0.576</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>0.504</td>
<td>0.693</td>
<td>0.528</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>-0.476</td>
<td>0.810</td>
<td>0.346</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>0.738</td>
<td>1.242</td>
<td>0.352</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>0.429</td>
<td>0.967</td>
<td>0.197</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.376</td>
<td>0.828</td>
<td>2.763</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.371</td>
<td>0.741</td>
<td>3.424</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>2.193</td>
<td>1.267</td>
<td>2.994</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAS</td>
<td>0.014</td>
<td>0.825</td>
<td>0.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-7.832</td>
<td>2.492</td>
<td>9.879</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>OVELHAS</td>
<td>0.435</td>
<td>1.148</td>
<td>0.143</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARROS</td>
<td>-0.072</td>
<td>1.571</td>
<td>0.002</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>0.995</td>
<td>0.745</td>
<td>1.798</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>0.889</td>
<td>0.646</td>
<td>1.897</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>1.098</td>
<td>1.438</td>
<td>0.583</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>0.505</td>
<td>0.691</td>
<td>0.533</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>-0.473</td>
<td>0.786</td>
<td>0.362</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>0.737</td>
<td>1.242</td>
<td>0.352</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>0.431</td>
<td>0.959</td>
<td>0.202</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.375</td>
<td>0.825</td>
<td>2.776</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.371</td>
<td>0.740</td>
<td>3.428</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>2.196</td>
<td>1.253</td>
<td>3.072</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-7.828</td>
<td>2.482</td>
<td>9.950</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>OVELHAS</td>
<td>0.425</td>
<td>1.127</td>
<td>0.142</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>0.991</td>
<td>0.722</td>
<td>1.880</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>0.893</td>
<td>0.640</td>
<td>1.946</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>1.075</td>
<td>1.351</td>
<td>0.634</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>0.507</td>
<td>0.690</td>
<td>0.539</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>-0.476</td>
<td>0.783</td>
<td>0.369</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>0.742</td>
<td>1.237</td>
<td>0.360</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>0.415</td>
<td>0.895</td>
<td>0.215</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.370</td>
<td>0.818</td>
<td>2.606</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.369</td>
<td>0.740</td>
<td>3.428</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>2.199</td>
<td>1.250</td>
<td>3.094</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-7.856</td>
<td>2.406</td>
<td>10.863</td>
<td>1</td>
</tr>
<tr>
<td>Step</td>
<td>Variable</td>
<td>B</td>
<td>S.E.</td>
<td>Wald</td>
<td>df</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>4</td>
<td>TERRA</td>
<td>.962</td>
<td>.722</td>
<td>1,850</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.906</td>
<td>.639</td>
<td>2,007</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>1.047</td>
<td>1.337</td>
<td>.614</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.510</td>
<td>.692</td>
<td>.544</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>-.421</td>
<td>.766</td>
<td>.302</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.729</td>
<td>1.228</td>
<td>.352</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.528</td>
<td>.841</td>
<td>.395</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.506</td>
<td>.745</td>
<td>4,086</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.410</td>
<td>.732</td>
<td>3,713</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>2.115</td>
<td>1.226</td>
<td>2,977</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-7.623</td>
<td>2.289</td>
<td>11,087</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>TERRA</td>
<td>.865</td>
<td>.683</td>
<td>1,603</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.935</td>
<td>.639</td>
<td>2,140</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>1.067</td>
<td>1.317</td>
<td>.657</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.497</td>
<td>.692</td>
<td>.515</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.665</td>
<td>1.212</td>
<td>.300</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.492</td>
<td>.841</td>
<td>.342</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.413</td>
<td>.726</td>
<td>3,785</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.248</td>
<td>.667</td>
<td>3,503</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>1.948</td>
<td>1.164</td>
<td>2,799</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-7.357</td>
<td>2.166</td>
<td>11,536</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>TERRA</td>
<td>.934</td>
<td>.675</td>
<td>1,915</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.986</td>
<td>.633</td>
<td>2,432</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.995</td>
<td>1.310</td>
<td>.577</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.524</td>
<td>.682</td>
<td>.590</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.563</td>
<td>.823</td>
<td>.468</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.409</td>
<td>.727</td>
<td>3,756</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.224</td>
<td>.662</td>
<td>3,421</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>2.040</td>
<td>1.163</td>
<td>3,077</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-6.878</td>
<td>1.955</td>
<td>12,376</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>TERRA</td>
<td>.848</td>
<td>.662</td>
<td>1,639</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.934</td>
<td>.626</td>
<td>2,224</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>1.183</td>
<td>1.280</td>
<td>.854</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.517</td>
<td>.678</td>
<td>.581</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.494</td>
<td>.712</td>
<td>4,402</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.288</td>
<td>.657</td>
<td>3,847</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>2.035</td>
<td>1.178</td>
<td>2,985</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-6.641</td>
<td>1.913</td>
<td>12,051</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>TERRA</td>
<td>.964</td>
<td>.642</td>
<td>2,255</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>1.000</td>
<td>.614</td>
<td>2,651</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>1.067</td>
<td>1.261</td>
<td>.716</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.522</td>
<td>.703</td>
<td>4,691</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.341</td>
<td>.651</td>
<td>4,246</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>2.114</td>
<td>1.198</td>
<td>3,116</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-6.398</td>
<td>1.878</td>
<td>11,601</td>
<td>1</td>
</tr>
</tbody>
</table>
Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable</th>
<th>B</th>
<th>S.E</th>
<th>Wald</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>TERRA</td>
<td>1.974</td>
<td>.634</td>
<td>2.357</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>1.036</td>
<td>.510</td>
<td>2.887</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.530</td>
<td>.698</td>
<td>4.809</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.284</td>
<td>.647</td>
<td>3.932</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>2.211</td>
<td>1.172</td>
<td>3.559</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-5.490</td>
<td>1.427</td>
<td>14.796</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>MR</td>
<td>1.137</td>
<td>.595</td>
<td>3.650</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>1.470</td>
<td>.675</td>
<td>4.739</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>1.328</td>
<td>.641</td>
<td>4.298</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>1.988</td>
<td>1.142</td>
<td>3.032</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-4.972</td>
<td>1.326</td>
<td>14.056</td>
<td>1</td>
</tr>
</tbody>
</table>
Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th></th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OVELHAS</td>
<td>.713</td>
<td>1.539</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.963</td>
<td>.929</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>.182</td>
<td>2.718</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.169</td>
<td>2.433</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.448</td>
<td>3.006</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.467</td>
<td>1.655</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.557</td>
<td>.621</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.553</td>
<td>2.091</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.657</td>
<td>1.536</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.096</td>
<td>3.958</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.084</td>
<td>3.940</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.084</td>
<td>8.962</td>
</tr>
<tr>
<td></td>
<td>ENTRADA</td>
<td>.986</td>
<td>1.014</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.002</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>OVELHAS</td>
<td>.705</td>
<td>1.545</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.963</td>
<td>.930</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>.180</td>
<td>2.715</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.168</td>
<td>2.434</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.445</td>
<td>2.997</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.465</td>
<td>1.656</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.547</td>
<td>.623</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.553</td>
<td>2.090</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.653</td>
<td>1.539</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.096</td>
<td>3.954</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.084</td>
<td>3.938</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.080</td>
<td>8.992</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.002</td>
<td>.000</td>
</tr>
<tr>
<td>3</td>
<td>OVELHAS</td>
<td>.706</td>
<td>1.530</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>.170</td>
<td>2.693</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.163</td>
<td>2.443</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.426</td>
<td>2.931</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.463</td>
<td>1.660</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.543</td>
<td>.621</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.548</td>
<td>2.101</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.643</td>
<td>1.515</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.094</td>
<td>3.937</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.064</td>
<td>3.932</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.079</td>
<td>9.016</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.001</td>
<td>.000</td>
</tr>
</tbody>
</table>
Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>TERRA</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>.174</td>
<td>2.668</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.157</td>
<td>2.473</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.433</td>
<td>2.850</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.461</td>
<td>1.666</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.583</td>
<td>.666</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.553</td>
<td>2.073</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.530</td>
<td>1.696</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.043</td>
<td>4.511</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.054</td>
<td>4.095</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.084</td>
<td>8.288</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>5</td>
<td>TERRA</td>
<td>.206</td>
<td>2.374</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.143</td>
<td>2.547</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.418</td>
<td>2.908</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.473</td>
<td>1.643</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.584</td>
<td>1.944</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.559</td>
<td>1.635</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.052</td>
<td>4.109</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.081</td>
<td>3.482</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.094</td>
<td>7.012</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td>6</td>
<td>TERRA</td>
<td>.166</td>
<td>2.545</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.119</td>
<td>2.682</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.448</td>
<td>2.706</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.442</td>
<td>1.688</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.494</td>
<td>1.756</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.053</td>
<td>4.091</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.064</td>
<td>3.402</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.079</td>
<td>7.691</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.000</td>
<td>.001</td>
</tr>
<tr>
<td>7</td>
<td>TERRA</td>
<td>.200</td>
<td>2.335</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.136</td>
<td>2.545</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.355</td>
<td>3.263</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.445</td>
<td>1.676</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.036</td>
<td>4.454</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.050</td>
<td>3.625</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.084</td>
<td>7.656</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td>8</td>
<td>TERRA</td>
<td>.133</td>
<td>2.623</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.104</td>
<td>2.718</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.397</td>
<td>2.907</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.030</td>
<td>4.580</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.039</td>
<td>3.822</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.078</td>
<td>8.281</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.001</td>
<td>.002</td>
</tr>
</tbody>
</table>
Variables in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable</th>
<th>Sig</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>TERRA</td>
<td>.125</td>
<td>2.648</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>.089</td>
<td>2.817</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.028</td>
<td>4.618</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.047</td>
<td>3.610</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.059</td>
<td>9.127</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.000</td>
<td>.004</td>
</tr>
<tr>
<td>10</td>
<td>MR</td>
<td>.056</td>
<td>3.116</td>
</tr>
<tr>
<td></td>
<td>SEPARAAS</td>
<td>.029</td>
<td>4.349</td>
</tr>
<tr>
<td></td>
<td>CAES02</td>
<td>.038</td>
<td>3.773</td>
</tr>
<tr>
<td></td>
<td>FEMEAS</td>
<td>.082</td>
<td>7.301</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>.000</td>
<td>.007</td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: OVELHAS, BARDOS, TERRA, MR, OUT, DEZ, ABORTOS, PASTO, BARDO, SEPARAAS, CAES02, FEMEAS, ENTRADAD.
<table>
<thead>
<tr>
<th>Step</th>
<th>Variables</th>
<th>Score</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>2°</td>
<td>ENTRADAD</td>
<td>0,000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3°</td>
<td>BARDOS</td>
<td>0,002</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>0,000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,002</td>
<td>2</td>
</tr>
<tr>
<td>4°</td>
<td>OVELHAS</td>
<td>0,143</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>0,000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>0,009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,145</td>
<td>3</td>
</tr>
<tr>
<td>5°</td>
<td>OVELHAS</td>
<td>0,073</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>0,033</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>0,303</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>0,005</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,447</td>
<td>4</td>
</tr>
<tr>
<td>6°</td>
<td>OVELHAS</td>
<td>0,076</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>0,011</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>0,245</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>0,307</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>0,003</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,743</td>
<td>5</td>
</tr>
<tr>
<td>7°</td>
<td>OVELHAS</td>
<td>0,244</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>0,033</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>0,176</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>0,424</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>0,473</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>0,018</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,205</td>
<td>6</td>
</tr>
<tr>
<td>8°</td>
<td>OVELHAS</td>
<td>0,248</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>0,022</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>0,597</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>0,154</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>0,528</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>0,465</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>0,024</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,755</td>
<td>7</td>
</tr>
<tr>
<td>9°</td>
<td>OVELHAS</td>
<td>0,286</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>0,204</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>0,746</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>0,428</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>0,178</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>0,421</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>0,749</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>0,007</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Overall Statistics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,457</td>
<td>8</td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>Variables</th>
<th>Score</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>OVELHAS</td>
<td>0.216</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>0.441</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>2.436</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>0.836</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>1.011</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>0.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>0.695</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>0.341</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>0.001</td>
<td>1</td>
</tr>
</tbody>
</table>

Overall Statistics

<table>
<thead>
<tr>
<th>Score</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.812</td>
<td>9</td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step 2<sup>a</sup> Variables</th>
<th>ENTRADAD</th>
<th>.986</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3<sup>b</sup> Variables</td>
<td>BARDOS</td>
<td>.963</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>.989</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td></td>
<td>.999</td>
</tr>
<tr>
<td>Step 4<sup>c</sup> Variables</td>
<td>OVELHAS</td>
<td>.705</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.985</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>.926</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td></td>
<td>.986</td>
</tr>
<tr>
<td>Step 5<sup>d</sup> Variables</td>
<td>OVELHAS</td>
<td>.787</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.960</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.582</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>.946</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td></td>
<td>.978</td>
</tr>
<tr>
<td>Step 6<sup>e</sup> Variables</td>
<td>OVELHAS</td>
<td>.783</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.917</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.520</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.579</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>.958</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td></td>
<td>.981</td>
</tr>
<tr>
<td>Step 7<sup>f</sup> Variables</td>
<td>OVELHAS</td>
<td>.621</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.856</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.675</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.515</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.492</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>.894</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td></td>
<td>.977</td>
</tr>
<tr>
<td>Step 8<sup>g</sup> Variables</td>
<td>OVELHAS</td>
<td>.618</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.883</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.444</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.695</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.467</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.495</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>.877</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td></td>
<td>.972</td>
</tr>
<tr>
<td>Step 9<sup>h</sup> Variables</td>
<td>OVELHAS</td>
<td>.593</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.651</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.392</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.513</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.673</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.516</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.387</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>.934</td>
</tr>
<tr>
<td>Overall Statistics</td>
<td></td>
<td>.964</td>
</tr>
</tbody>
</table>
Variables not in the Equation

<table>
<thead>
<tr>
<th>Step</th>
<th>Variables</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>OVELHAS</td>
<td>.642</td>
</tr>
<tr>
<td></td>
<td>BARDOS</td>
<td>.507</td>
</tr>
<tr>
<td></td>
<td>TERRA</td>
<td>.119</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>.361</td>
</tr>
<tr>
<td></td>
<td>DEZ</td>
<td>.315</td>
</tr>
<tr>
<td></td>
<td>ABORTOS</td>
<td>.983</td>
</tr>
<tr>
<td></td>
<td>PASTO</td>
<td>.404</td>
</tr>
<tr>
<td></td>
<td>BARDO</td>
<td>.559</td>
</tr>
<tr>
<td></td>
<td>ENTRADAD</td>
<td>.973</td>
</tr>
</tbody>
</table>

Overall Statistics: 850

a. Variable(s) removed on step 2: ENTRADAD.
b. Variable(s) removed on step 3: BARDOS.
c. Variable(s) removed on step 4: OVELHAS.
d. Variable(s) removed on step 5: ABORTOS.
e. Variable(s) removed on step 6: PASTO.
f. Variable(s) removed on step 7: BARDO.
g. Variable(s) removed on step 8: DEZ.
h. Variable(s) removed on step 9: OUT.
i. Variable(s) removed on step 10: TERRA.
ANEXO V

Legislação consultada
Lista da Legislação Nacional consultada

Decreto Lei n.º 39209, de 14 de Maio de 1953
Decreto Lei n.º 54/84, de 15 de Fevereiro
Decreto Lei n.º 290/90, de 20 de Setembro
Decreto Lei n.º 67/91, de 8 de Fevereiro
Decreto Lei n.º 64/92, de 23 de Abril
Decreto Lei 245/96, de 20 de Dezembro
Decreto Lei n.º 338/99, de 24 de Agosto
Decreto Lei n.º 244/00, de 27 de Setembro

Decreto Regulamentar n.º 22/89, de 25 de Maio
Decreto Regulamentar n.º 25/93 de 17 de Agosto

Despacho n.º 17 735/99, de 10 de Setembro

Portaria n.º 14805, de 29 de Março de 1954
Portaria n.º 595/81, de 15 de Julho
Portaria n.º 861/84, de 15 de Novembro
Portaria n.º 63/86, de 1 de Março
Portaria n.º 488/86, de 4 de Setembro
Portaria n.º 102/88 de 12 de Fevereiro
Portaria n.º 379/88, de 14 de Junho
Portaria n.º 233/91, de 22 de Março
Portaria n.º 427/91, de 24 de Maio
Portaria n.º 1051/91, de 15 de Outubro
Portaria n.º 121/92, de 26 de Fevereiro
Portaria n.º 769/92, de 7 de Agosto
Portaria n.º 533/93, de 21 de Maio
Portaria n.º 744-B/93, de 18 de Agosto
Portaria n.º 243/94, de 18 de Abril
Portaria n.º 809-G/94, de 12 de Setembro
Portaria n.º 3/95, de 3 de Janeiro
Portaria n.º 1068/95, de 30 de Agosto
Portaria n.º 56/96, de 22 de Fevereiro
Portaria n.º 147-A/97, de 28 de Fevereiro
Portaria n.º 1088/97, de 30 de Outubro
Portaria n.º 68/99, de 28 de Janeiro

Lista da Legislação comunitária consultada

Decisão da Comissão 91/217/CEE, de 26 de Março
Decisão da Comissão 90/242/CEE, de 21 de Março

Regulamento (CEE) n.º 3887/92 da Comissão, de 23 de Dezembro de 1992
Regulamentos (CE) n.º 2628/97 da Comissão, de 29 de Dezembro
Regulamentos (CE) n.º 2629/97 da Comissão, de 29 de Dezembro
Regulamentos (CE) n.º 2630/97 da Comissão, de 29 de Dezembro
Regulamentos (CE) n.º 484/98 da Comissão, de 27 de Fevereiro
Regulamento (CE) n.º 820/97 do Conselho, de 21 de Abril,
Regulamento (CEE) n.º 3508/92 do Conselho