Browsing by Author "Ferreira, Paulo S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Creation of a vehicular delay-tolerant network prototypePublication . Dias, João A.; Isento, João N.; Silva, Bruno M.; Soares, V.N.G.J.; Ferreira, Paulo S.; Nogueira, António M.D.; Rodrigues, JoelVehicular Delay-Tolerant Network (VDTN) is a new disruptive network architecture where vehicles act as the communication infrastructure. VDTN follows a layered architecture based on control and data planes separation, and positioning the bundle layer under the network layer. VDTN furnishes low-cost asynchronous communications coping with intermittent and sparse connectivity, variable delays and even no end-to-end connection. This paper presents a VDTN prototype (testbed) proposal, which implements and validates the VDTN layered architecture considering the proposed out-of-band signaling. The main goals of the prototype are emulation, demonstration, performance evaluation, and diagnose of protocol stacks and services, proving the applicability of VDTNs over a wide range of environments.
- Improvement of messages delivery time on vehicular delay-tolerant networksPublication . Soares, V.N.G.J.; Rodrigues, Joel; Ferreira, Paulo S.; Nogueira, António M.D.Vehicular Delay-Tolerant Networks (VDTNs) are an application of the Delay-Tolerant Network (DTN) concept, where the movement of vehicles and their message relaying service is used to enable network connectivity under unreliable conditions. To address the problem of intermittent connectivity, long-term message storage is combined with routing schemes that replicate messages at transfer opportunities. However, these strategies can be inefficient in terms of network resource usage. Therefore, efficient scheduling and dropping policies are necessary to improve the overall network performance. This work presents a performance analysis, based on simulation, of the impact of different scheduling and dropping policies enforced on Epidemic and Spray and Wait routing schemes. This paper evaluates these policies from the perspective of their efficiency in reducing the message’s end-to-end delay. In our scenario, it is shown that when these policies are based on the message’s lifetime criteria, the message average delay decreases significantly and the overall message delivery probability also increases for both routing protocols. Further simulations show that these results outperform the MaxProp and PRoPHET routing protocols that have their own scheduling and dropping mechanisms.