Browsing by Author "Zheng, Meichun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Dynamic energy-aware anchor optimization for contact-based indoor localization in MANETsPublication . Jesús-Azabal, Manuel; Zheng, Meichun; Soares, V.N.G.J.Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous approaches, indoor contexts with resource limitations, energy constraints, or physical restrictions continue to suffer from unreliable localization. Many existing methods employ a fixed number of reference anchors, which sets a hard balance between localization accuracy and energy consumption, forcing designers to choose between precise location data and battery life. As a response to this challenge, this paper proposes an energy-aware indoor positioning strategy based on Mobile Ad Hoc Networks (MANETs). The core principle is a self-adaptive control loop that continuously monitors the network’s positioning accuracy. Based on this real-time feedback, the system dynamically adjusts the number of active anchors, increasing them only when accuracy degrades and reducing them to save energy once stability is achieved. The method dynamically estimates relative coordinates by analyzing node encounters and contact durations, from which relative distances are inferred. Generalized Multidimensional Scaling (GMDS) is applied to construct a relative spatial map of the network, which is then transformed into absolute coordinates using reference nodes, known as anchors. The proposal is evaluated in a realistic simulated indoor MANET, assessing positioning accuracy, adaptation dynamics, anchor sensitivity, and energy usage. Results show that the adaptive mechanism achieves higher accuracy than fixed-anchor configurations in most cases, while significantly reducing the average number of required anchors and their associated energy footprint. This makes it suitable for infrastructure-poor, resource-constrained indoor environments where both accuracy and energy efficiency are critical.
- Hybrid B5G-DTN architecture with federated learning for contextual communication offloadingPublication . Jesús-Azabal, Manuel; Zheng, Meichun; Soares, V.N.G.J.In dense urban environments and large-scale events, Internet infrastructure often becomes overloaded due to high communication demand. Many of these communications are local and short-lived, exchanged between users in close proximity but still relying on global infrastructure, leading to unnecessary network stress. In this context, delay-tolerant networks (DTNs) offer an alternative by enabling device-to-device (D2D) communication without requiring constant connectivity. However, DTNs face significant challenges in routing due to unpredictable node mobility and intermittent contacts, making reliable delivery difficult. Considering these challenges, this paper presents a hybrid Beyond 5G (B5G) DTN architecture to provide private context-aware routing in dense scenarios. In this proposal, dynamic contextual notifications are shared among relevant local nodes, combining federated learning (FL) and edge artificial intelligence (AI) to estimate the optimal relay paths based on variables such as mobility patterns and contact history. To keep the local FL models updated with the evolving context, edge nodes, integrated as part of the B5G architecture, act as coordinating entities for model aggregation and redistribution. The proposed architecture has been implemented and evaluated in simulation testbeds, studying its performance and sensibility to the node density in a realistic scenario. In high-density scenarios, the architecture outperforms state-of-the-art routing schemes, achieving an average delivery probability of 77%, with limited latency and overhead, demonstrating relevant technical viability.
