Repository logo
 
Publication

Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms

dc.contributor.authorTorres, Pedro
dc.contributor.authorCorreia, Luís M.
dc.contributor.authorRamalho, Armando
dc.date.accessioned2022-09-12T09:46:51Z
dc.date.available2022-09-12T09:46:51Z
dc.date.issued2022
dc.description.abstractThis paper presents an approach for automatic anomaly detection through vibration analysis based on machine learning algorithms.The study focuses on induction motors in a predictive maintenance context, but can be applied to other domains. Vibration analysis is an important diagnostic tool in industrial data analysis to predict anomaliescaused by equipment defects or in its use, allowing to increase its lifetime.It is not a new technique and is widely used in the industry, however withthe Industry 4.0 paradigm and the need to digitize any process, it gainsrelevance to automatic fault detection. The Isolation Forest algorithm isimplemented to detect anomalies in vibration datasets measured in anexperimental apparatus composed of an induction motor and a coupling system with shaft alignment/misalignment capabilities. The results showthat it is possible to detect anomalies automatically with a high level ofprecision and accuracy.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-031-09385-2_2pt_PT
dc.identifier.isbn978-303109384-5
dc.identifier.issn21954356
dc.identifier.urihttp://hdl.handle.net/10400.11/8113
dc.language.isoengpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectIndustry 4.0pt_PT
dc.subjectAnomaly detectionpt_PT
dc.subjectIsolation forestpt_PT
dc.subjectVibration analysispt_PT
dc.subjectBigMLpt_PT
dc.titleAutomatic anomaly detection in vibration analysis based on Machine Learning Algorithmspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlace2nd International Scientific Conference on Innovation in Engineeringpt_PT
oaire.citation.endPage23pt_PT
oaire.citation.startPage13pt_PT
person.familyNameBAPTISTA TORRES
person.familyNameRamalho
person.givenNamePEDRO MIGUEL
person.givenNameArmando
person.identifierK-5331-2015
person.identifier.ciencia-id2711-E707-519C
person.identifier.orcid0000-0003-4835-5022
person.identifier.orcid0000-0003-0500-0459
person.identifier.scopus-author-id56261515100
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication9d9ad49f-3c45-4a99-be21-7f13965c2628
relation.isAuthorOfPublication6b97c564-668a-46d8-a91b-ecfae68912c2
relation.isAuthorOfPublication.latestForDiscovery9d9ad49f-3c45-4a99-be21-7f13965c2628

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Automatic Anomaly etection in Vibration Analysis Based on Machine Learning Algorithms.pdf
Size:
4.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: