Repository logo
 
Publication

Real-time image detection for edge devices: a peach fruit detection application

dc.contributor.authorAssunção, Eduardo
dc.contributor.authorGaspar, Pedro Dinis
dc.contributor.authorAlibabaei, Khadijeh
dc.contributor.authorSimões, M.P.
dc.contributor.authorProença, Hugo
dc.contributor.authorSoares, V.N.G.J.
dc.contributor.authorCaldeira, J.M.L.P.
dc.date.accessioned2022-11-09T09:20:44Z
dc.date.available2022-11-09T09:20:44Z
dc.date.issued2022
dc.description.abstractWithin the scope of precision agriculture, many applications have been developed to support decision making and yield enhancement. Fruit detection has attracted considerable attention from researchers, and it can be used offline. In contrast, some applications, such as robot vision in orchards, require computer vision models to run on edge devices while performing inferences at high speed. In this area, most modern applications use an integrated graphics processing unit (GPU). In this work, we propose the use of a tensor processing unit (TPU) accelerator with a Raspberry Pi target device and the state-of-the-art, lightweight, and hardware-aware MobileDet detector model. Our contribution is the extension of the possibilities of using accelerators (the TPU) for edge devices in precision agriculture. The proposed method was evaluated using a novel dataset of peaches with three cultivars, which will be made available for further studies. The model achieved an average precision (AP) of 88.2% and a performance of 19.84 frames per second (FPS) at an image size of 640 × 480. The results obtained show that the TPU accelerator can be an excellent alternative for processing on the edge in precision agriculture.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationASSUNÇÃO, Eduardo [et al.] (2022) - Real-time image detection for edge devices: a peach fruit detection application. Future Internet. 14:11. DOI: https://doi.org/10.3390/fi14110323.
dc.identifier.doi10.3390/fi14110323pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.11/8159
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectDeep learningpt_PT
dc.subjectEdge devicept_PT
dc.subjectObject detectionpt_PT
dc.subjectPrecision agriculturept_PT
dc.subjectTPU acceleratorpt_PT
dc.titleReal-time image detection for edge devices: a peach fruit detection applicationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue11pt_PT
oaire.citation.startPage323pt_PT
oaire.citation.titleFuture Internetpt_PT
oaire.citation.volume14pt_PT
person.familyNameGaspar
person.familyNameSimões
person.familyNameCaldeira
person.givenNamePedro Dinis
person.givenNameMaria Paula
person.givenNameJoão
person.identifiera4GD8aoAAAAJ
person.identifier.ciencia-id6111-9F05-2916
person.identifier.ciencia-id5215-A196-0362
person.identifier.ciencia-id5B19-E130-E382
person.identifier.ciencia-idA91B-85B8-C27E
person.identifier.orcid0000-0003-1691-1709
person.identifier.orcid0000-0002-6599-0688
person.identifier.orcid0000-0002-8057-5474
person.identifier.orcid0000-0001-5830-3790
person.identifier.ridN-3016-2013
person.identifier.scopus-author-id57419570900
person.identifier.scopus-author-id36504886200
person.identifier.scopus-author-id27067580500
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationebfd94b1-21cd-4670-8626-e82f2b1c3436
relation.isAuthorOfPublicationc1c2eaaf-223e-4152-9245-04303ee41d75
relation.isAuthorOfPublicationa17d4ff5-1ff3-4dcc-b180-319e7ff3961d
relation.isAuthorOfPublication8eebc97c-5334-4f29-b7ee-71c4c436aa69
relation.isAuthorOfPublication.latestForDiscoveryebfd94b1-21cd-4670-8626-e82f2b1c3436

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
futureinternet-14-00323.pdf
Size:
3.96 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: