Repository logo
 
Publication

Nyon-data, a fall detection dataset from a hinged board apparatus

dc.contributor.authorDionísio, Rogério Pais
dc.contributor.authorRosa, Ana Rafaela
dc.contributor.authorJesus, Cassandra Sofia dos Santos
dc.date.accessioned2024-02-21T12:04:12Z
dc.date.available2024-02-21T12:04:12Z
dc.date.issued2024
dc.description.abstractFalls are one of the causes of severe hilliness among elders, and the COVID-19 pandemic increased the number of unattended cases because of the social distancing measures. This study aims to create a dataset that collects the data from a 3-axis acceleration sensor fixed on a hinged board apparatus that mimics a human fall event. The datalogging system uses off-the-shelf devices to measure, collect and store the data. The resulting dataset includes data from different angle positions and heights, corresponding to joints of the lower limbs of the human body (ankle, knee, and hip). We use the dataset with a threshold-based fall detection algorithm. The result from the Receiver Operating Characteristic curve shows a good behavior with a mean Area Under the Curve of 0.77 and allow to compute a best threshold value with False Positive Rate of 14.8% and True Positive rate of 89.1%. The optimal threshold value may vary depending on the specific population, activity patterns, and environmental conditions, which may require further customization and validation in real-world settings.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationDIONÍSIO, R.P. ; ROSA, A.R. ; JESUS, C.S.S. (2024) - Nyon-data, a fall detection dataset from a hinged board apparatus. In: BEN-AHMED, M. [et al.] (eds.) - 8th International Conference on Smart Cities Applications : Proceedings SCA 2023 : Innovations in smart cities applications. [S.l.] : Springer, Cham. Vol. 7, p. 391-401. DOI: https://doi.org/10.1007/978-3-031-53824-7_36pt_PT
dc.identifier.doi10.1007/978-3-031-53824-7_36pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.11/8893
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer, Champt_PT
dc.subjectDatasetpt_PT
dc.subjectFall detection algorithmpt_PT
dc.titleNyon-data, a fall detection dataset from a hinged board apparatuspt_PT
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage401pt_PT
oaire.citation.startPage391pt_PT
oaire.citation.titleThe Proceedings of the 8th International Conference on Smart City Applications SCA 2023: Innovations in Smart Cities Applicationspt_PT
oaire.citation.volume906pt_PT
person.familyNamePAIS DIONÍSIO
person.givenNameROGÉRIO
person.identifier30skvuAAAAAJ
person.identifier.ciencia-id2F1A-414F-368B
person.identifier.orcid0000-0002-6810-2447
rcaap.rightsopenAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublicationfa3cfc92-0ec0-412b-9441-d657fc131926
relation.isAuthorOfPublication.latestForDiscoveryfa3cfc92-0ec0-412b-9441-d657fc131926

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PaperIPCB_SCA23.pdf
Size:
2.96 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: