Repository logo
 
Publication

A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration

dc.contributor.authorGoovaerts, Pierre
dc.contributor.authorAlbuquerque, M.T.D.
dc.contributor.authorAntunes, I.M.H.R.
dc.date.accessioned2019-07-23T15:36:55Z
dc.date.available2019-07-23T15:36:55Z
dc.date.issued2016
dc.description.abstractThis paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R2=0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold's paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationGOOVAERTS, P.; ALBUQUERQUE, M. T. D.; ANTUNES, I. M. H. R. (2016). A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration. Mathematical Geosciences. ISBN: 1874-8961. 48(8), p. 921–939pt_PT
dc.identifier.doi10.1007/s11004-015-9632-8pt_PT
dc.identifier.issn1874-8961
dc.identifier.urihttp://hdl.handle.net/10400.11/6623
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs11004-015-9632-8pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/pt_PT
dc.subjectSequential indicator simulationpt_PT
dc.subjectSoft indicatorspt_PT
dc.subjectCluster analysispt_PT
dc.subjectLinear regressionpt_PT
dc.subjectAccuracy plotspt_PT
dc.titleA multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold explorationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage939pt_PT
oaire.citation.issue8pt_PT
oaire.citation.startPage921pt_PT
oaire.citation.titleMathematical Geosciencespt_PT
oaire.citation.volume48pt_PT
person.familyNameAlbuquerque
person.familyNameantunes
person.givenNameMaria Teresa
person.givenNameIsabel Margarida
person.identifier.ciencia-id5A1C-8956-4C0A
person.identifier.ciencia-idCB1E-FAD2-37D6
person.identifier.orcid0000-0002-8782-6133
person.identifier.orcid0000-0003-3456-5926
person.identifier.ridB-1536-2013
person.identifier.ridM-1043-2013
person.identifier.scopus-author-id55507421600
person.identifier.scopus-author-id6701817085
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicatione2c2d171-e148-4c23-9cf8-0eb6d810c15e
relation.isAuthorOfPublication1db83c95-f80c-41bb-b5c6-437ab32d9683
relation.isAuthorOfPublication.latestForDiscoverye2c2d171-e148-4c23-9cf8-0eb6d810c15e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
goovaerts2016.pdf
Size:
4.07 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: