Repository logo
 
Publication

Unpacking occupational health data in the tertiary sector. From spatial clustering to bayesian decision making

dc.contributor.authorPazo, María
dc.contributor.authorBoente, Carlos
dc.contributor.authorAlbuquerque, M.T.D.
dc.contributor.authorRoque, Natália
dc.contributor.authorGerassis, Saki
dc.contributor.authorTaboada, Javier
dc.contributor.editorZanini , Andrea
dc.contributor.editorD'Oria, Marco
dc.date.accessioned2025-04-09T16:24:08Z
dc.date.available2025-04-09T16:24:08Z
dc.date.issued2022
dc.description.abstractThe health status of the service sector workforce is a great unknown for medical geography. Despite the advances carried out by spatial epidemiology to predict spatial patterns of disease incidence, there are important challenges unsolved. In particular, the main issue resides in the ability to effectively simplify and visually represent the problem domain, given the need to cover very different service activities and, at the same time, consider the impact of numerous emerging risk factors such as those stemming from bioclimatic and socioeconomic variables. This article proposes a new approach that allows to consider, simplify, prioritise and visualise multiple occupational health risk factors giving rise to not healthy workers. For that, it is used a twofold approach based on an innovative synergy between Bayesian machine learning and geostatistics, to analyse up to 74.401 occupational health surveillance tests gathered between 2012-2016 in Spain. This solution allows to extract relevant patterns over those risk factors that cannot be further discriminated in the Bayesian network, such as spine or limbs observations, depicting distribution maps of key differentiating variables computed by an ordinary kriging approach.eng
dc.identifier.citationPAZO, M. [et al.] (2022) - Unpacking occupational health data in the tertiary sector. From spatial clustering to Bayesian decision making. In 14th International Conference on Geostatistics for Environmental Applications (GeoENV 2022), Parma - Environmental pollution and risk assessment: proceedings. Parma : Università. p. 66-73.
dc.identifier.urihttp://hdl.handle.net/10400.11/10122
dc.language.isoeng
dc.peerreviewedyes
dc.publisherUniversità di Parma
dc.relation.ispartofseries66; 73
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHealth data
dc.subjectInformation theory
dc.subjectOrdinary kriging
dc.subjectTarget analysis
dc.titleUnpacking occupational health data in the tertiary sector. From spatial clustering to bayesian decision makingeng
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2022
oaire.citation.conferencePlaceParma, Itália
oaire.citation.title14th International Conference on Geostatistics for Environmental Applications (GeoENV 2022)
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameAlbuquerque
person.familyNameMartins Roque
person.givenNameMaria Teresa
person.givenNameNatália
person.identifierNatália Martins Roque
person.identifier.ciencia-id5A1C-8956-4C0A
person.identifier.ciencia-id451A-332D-0798
person.identifier.orcid0000-0002-8782-6133
person.identifier.orcid0000-0001-8859-4365
person.identifier.ridB-1536-2013
person.identifier.scopus-author-id55507421600
person.identifier.scopus-author-id57200227653
relation.isAuthorOfPublicatione2c2d171-e148-4c23-9cf8-0eb6d810c15e
relation.isAuthorOfPublicationfaca1743-7a98-4404-acef-ab73a684d3c2
relation.isAuthorOfPublication.latestForDiscoverye2c2d171-e148-4c23-9cf8-0eb6d810c15e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
17.Proceedings_of_geoENV2022_3.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: