Repository logo
 
Publication

Predictive maintenance based on log analysis: A systematic review

dc.contributor.authorBarata, Luís
dc.contributor.authorSequeira, Sérgio
dc.contributor.authorLopes, Eurico
dc.date.accessioned2024-07-30T11:38:47Z
dc.date.available2024-07-30T11:38:47Z
dc.date.issued2024
dc.description.abstractIn today’s industries, the Maintenance process of machines and assets implies a significant part of the total operating cost. Many efforts have been made to reduce this cost by optimizing the process and evolving methods that allow information collection on equipment status, avoiding redundant interventions, and predicting the exact moment to perform a maintenance intervention. Using “intelligent” systems that collect data from the operation and remote management systems allows us to gather all the data and apply some methodologies capable of identifying expected behaviors based on past operations. We present a survey of technologies, techniques, and methodologies to give the knowledge background to develop a framework to minimize the occurrence of failures and optimize the process of Predictive Maintenance (PdM) based on the analysis of Log files collected from the various industrial equipment. Generally, these logs contain many records, and many of these records do not directly contribute to evaluating the operation’s machine status. Most of the studies included in this survey use machine learning techniques and focus a significant part of their research on data preprocessing, uniformization and clarification.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBARATA, L. ; SEQUEIRA, S. ; LOPES, E. (2024) - Predictive maintenance based on log analysis: A systematic review. Revista de Informática Teórica e Aplicada. 31:1, p. 60–67. DOI: https://doi.org/10.22456/2175-2745.130465pt_PT
dc.identifier.doihttps://doi.org/10.22456/2175-2745.130465pt_PT
dc.identifier.issn2175-2745
dc.identifier.urihttp://hdl.handle.net/10400.11/9080
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInstitute of Informatics at Federal University of Rio Grande do Sul - UFRGS, Brazilpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectPredictive maintenancept_PT
dc.subjectLog analysispt_PT
dc.subjectLog filespt_PT
dc.subjectPredictive algorithmspt_PT
dc.subjectPredictive Maintenance based on Log Analysispt_PT
dc.titlePredictive maintenance based on log analysis: A systematic reviewpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceRio Grande do Sul - Brasilpt_PT
oaire.citation.endPage67pt_PT
oaire.citation.issue31pt_PT
oaire.citation.startPage60pt_PT
oaire.citation.titleRevista de Informática Teórica e Aplicadapt_PT
person.familyNameLopes
person.givenNameEurico
person.identifier.ciencia-id281C-B830-CF30
person.identifier.ciencia-idC117-F943-3B96
person.identifier.orcid0000-0002-6471-4681
person.identifier.orcid0000-0002-1818-8203
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationeb1ed459-bdc5-42b3-a6aa-1d79caeabdcc
relation.isAuthorOfPublication9c74d9ee-6c71-4148-b219-2795a71a4d1b
relation.isAuthorOfPublication.latestForDiscovery9c74d9ee-6c71-4148-b219-2795a71a4d1b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RITA_Vol_31_Nr_1_60-67-2024.pdf
Size:
193.12 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: