Repository logo
 
Publication

A simple approach to detect anomalies in microservices-based systems using PyOD

dc.contributor.authorLandim, Lauriana Patricia Tavares
dc.contributor.authorBarata, Luís
dc.contributor.authorLopes, Eurico
dc.date.accessioned2023-04-19T14:42:15Z
dc.date.available2023-04-19T14:42:15Z
dc.date.issued2022
dc.description.abstractEase of scale is one of the defining characteristics of microservices. However, with scalability comes the problem of diversity of services, making it very important to detect anomalies the soonest possible. Because it is recent, there are still few studies on the best approaches to detecting anomalies in microservices. This paper proposes the Python toolkit, PyOD, as an approach for microservice anomaly detection. This toolkit is composed of a set of anomaly detection algorithms, including classical LOF (SIGMOD2000) to the latest ECOD (TKDE2022). To evaluate the approach, we used two of its algorithms, k Nearest Neighbors (kNN) and Histogram-based Outlier Score (HBOS) to detect anomalies such as application bugs, CPU exhausted, and network jam on the TraceRCA dataset. This dataset contains logs from a real microservices system. The preliminary results show that HBOS algorithm performs better than kNN, with Recall and F1-Score of 93% and 89%, respectively, while for kNN these metrics were 92% and 85%, respectively.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationLANDIM, Lauriana ; BARATA, Luís ; LOPES, Eurico ; (2022) - A simple approach to detect anomalies in microservices-based systems using PyOD. CAPSI 2022 Proceedings. 36. ISSN 2183-489X.pt_PT
dc.identifier.issn2183-489X
dc.identifier.urihttp://hdl.handle.net/10400.11/8472
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAnomaly detectionpt_PT
dc.subjectPyODpt_PT
dc.subjectOutliers algorithmspt_PT
dc.subjectMicroservicespt_PT
dc.titleA simple approach to detect anomalies in microservices-based systems using PyODpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceCabo Verdept_PT
oaire.citation.endPage186pt_PT
oaire.citation.startPage177pt_PT
oaire.citation.title22.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2022)pt_PT
person.familyNameLopes
person.givenNameEurico
person.identifier.ciencia-id281C-B830-CF30
person.identifier.ciencia-idC117-F943-3B96
person.identifier.orcid0000-0002-6471-4681
person.identifier.orcid0000-0002-1818-8203
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationeb1ed459-bdc5-42b3-a6aa-1d79caeabdcc
relation.isAuthorOfPublication9c74d9ee-6c71-4148-b219-2795a71a4d1b
relation.isAuthorOfPublication.latestForDiscovery9c74d9ee-6c71-4148-b219-2795a71a4d1b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Simple Approach to Detect Anomalies in Microservices-Based Syst.pdf
Size:
315.04 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: