Repository logo
 
Publication

Phrase-oriented generative rhythmic patterns for jazz solos

dc.contributor.authorRaposo, Adriano N.
dc.contributor.authorSoares, V.N.G.J.
dc.date.accessioned2025-11-06T16:37:48Z
dc.date.available2025-11-06T16:37:48Z
dc.date.issued2025
dc.date.updated2025-11-05T16:38:17Z
dc.descriptionThe authors would like to thank Klaus Frieler for granting access to the dataset and for his valuable suggestions, which greatly contributed to the development of this work.
dc.description.abstractThis study introduces a novel generative approach for crafting phrase-oriented rhythmic patterns in jazz solos, leveraging statistical analyses of a comprehensive corpus, the Weimar Jazz Database. Jazz solos, celebrated for their improvisational complexity, require a delicate interplay between rhythm and melody, making the generation of authentic rhythmic patterns a challenging task. This work systematically explores the relationships among rhythmic elements, including phrases, beats, divisions, and patterns. The generative method employs a Markov chain framework to synthesize rhythmic divisions and patterns, ensuring stylistic coherence and diversity. An extensive evaluation compares original and generated datasets through statistical and machine learning metrics, validating the generative model’s ability to replicate key rhythmic characteristics while fostering innovation. The findings underscore the potential of this approach to contribute significantly to the fields of computational creativity and algorithmic music composition, providing a robust tool for generating compelling jazz solos.eng
dc.description.sponsorshipV.N.G.J.S. and A.N.R. acknowledge that work is funded by FCT/MECI through national funds and when applicable co-funded EU funds under UID/50008: Instituto de Telecomunicações.
dc.description.versionN/A
dc.identifier.citationRAPOSO, A.N. ; SOARES, V.N.G.J. (2025) - Phrase-oriented generative rhythmic patterns for jazz solos. Appl. Sci. 15, p. 11058. DOI: 10.3390/app152011058
dc.identifier.doi10.3390/app152011058en_US
dc.identifier.slugcv-prod-4581469
dc.identifier.urihttp://hdl.handle.net/10400.11/10352
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectGenerative music
dc.subjectMachine learning
dc.subjectAlgorithmic composition
dc.subjectStatistical methods
dc.subjectRhythmic patterns
dc.subjectJazz solos
dc.titlePhrase-oriented generative rhythmic patterns for jazz soloseng
dc.typeresearch articleen_US
dspace.entity.typePublication
oaire.citation.issue20en_US
oaire.citation.titleApplied Sciencesen_US
oaire.citation.volume15en_US
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.identifiera4GD8aoAAAAJ
person.identifier.ciencia-id5B19-E130-E382
person.identifier.orcid0000-0002-8057-5474
rcaap.cv.cienciaid5B19-E130-E382 | Vasco Nuno da Gama de Jesus Soares
rcaap.rightsopenAccessen_US
relation.isAuthorOfPublicationa17d4ff5-1ff3-4dcc-b180-319e7ff3961d
relation.isAuthorOfPublication.latestForDiscoverya17d4ff5-1ff3-4dcc-b180-319e7ff3961d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-15-11058-v2.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: