Repository logo
 
Publication

PLS-R calibration models for wine spirit volatile phenols prediction by Near-Infrared Spectroscopy

dc.contributor.authorAnjos, O.
dc.contributor.authorCaldeira, Ilda
dc.contributor.authorFernandes, Tiago A.
dc.contributor.authorPedro, Soraia
dc.contributor.authorVitória, Cláudia
dc.contributor.authorAlves, Sheila Oliveira
dc.contributor.authorCatarino, Sofia
dc.contributor.authorCanas, Sara
dc.date.accessioned2022-01-12T12:33:35Z
dc.date.available2022-01-12T12:33:35Z
dc.date.issued2021
dc.description.abstractNear-infrared spectroscopic (NIR) technique was used, for the first time, to predict volatile phenols content, namely guaiacol, 4-methyl-guaiacol, eugenol, syringol, 4-methyl-syringol and 4- allyl-syringol, of aged wine spirits (AWS). This study aimed to develop calibration models for the volatile phenol’s quantification in AWS, by NIR, faster and without sample preparation. Partial least square regression (PLS-R) models were developed with NIR spectra in the near-IR region (12,500–4000 cm−1 ) and those obtained from GC-FID quantification after liquid-liquid extraction. In the PLS-R developed method, cross-validation with 50% of the samples along a validation test set with 50% of the remaining samples. The final calibration was performed with 100% of the data. PLS-R models with a good accuracy were obtained for guaiacol (r2 = 96.34; RPD = 5.23), 4-methyl-guaiacol (r2 = 96.1; RPD = 5.07), eugenol (r2 = 96.06; RPD = 5.04), syringol (r2 = 97.32; RPD = 6.11), 4-methylsyringol (r2 = 95.79; RPD = 4.88) and 4-allyl-syringol (r2 = 95.97; RPD = 4.98). These results reveal that NIR is a valuable technique for the quality control of wine spirits and to predict the volatile phenols content, which contributes to the sensory quality of the spirit beverages.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationANJOS, O [et al.] (2021) - PLS-R calibration models for wine spirit volatile phenols prediction by Near-Infrared Spectroscopy. Sensors.Vol. 22, n.º 1, p. 286. DOI 10.3390/s22010286
dc.identifier.doi10.3390/s22010286pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.11/7843
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectNIRpt_PT
dc.subjectCalibration modelspt_PT
dc.subjectPLS-Rpt_PT
dc.subjectVolatile phenolspt_PT
dc.subjectAged wine spiritpt_PT
dc.titlePLS-R calibration models for wine spirit volatile phenols prediction by Near-Infrared Spectroscopypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue1pt_PT
oaire.citation.startPage286pt_PT
oaire.citation.titleSensorspt_PT
oaire.citation.volume22pt_PT
person.familyNameAnjos
person.familyNamecaldeira
person.familyNameFernandes
person.familyNamePedro
person.familyNameVitória
person.familyNameOliveira Alves
person.familyNameCatarino
person.familyNamede Almeida Lopes Canas
person.givenNameOfélia
person.givenNameilda
person.givenNameTiago
person.givenNameSoraia Inês
person.givenNameCláudia
person.givenNameSheila Cristina de
person.givenNameSofia
person.givenNameSara Maria
person.identifier3719814
person.identifierB-9350-2
person.identifier.ciencia-idC21D-D8C7-3037
person.identifier.ciencia-id1915-F5F5-C6AD
person.identifier.ciencia-id8810-5C8A-08D0
person.identifier.ciencia-id5011-C0CC-7186
person.identifier.ciencia-id4719-8EA0-063A
person.identifier.ciencia-id3E1A-CDB8-3D21
person.identifier.ciencia-id7212-C53B-0F02
person.identifier.ciencia-idEB11-791E-0118
person.identifier.orcid0000-0003-0267-3252
person.identifier.orcid0000-0003-2151-2008
person.identifier.orcid0000-0002-3374-612X
person.identifier.orcid0000-0002-7934-7183
person.identifier.orcid0000-0003-2222-9685
person.identifier.orcid0000-0002-9963-4673
person.identifier.orcid0000-0002-6223-4377
person.identifier.orcid0000-0002-9781-6481
person.identifier.ridG-2808-2012
person.identifier.ridB-4023-2016
person.identifier.ridB-6777-2013
person.identifier.ridD-2752-2013
person.identifier.scopus-author-id23395659700
person.identifier.scopus-author-id8056539300
person.identifier.scopus-author-id24449123500
person.identifier.scopus-author-id57193863077
person.identifier.scopus-author-id8354919700
person.identifier.scopus-author-id6507398291
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationdf9191ae-0bbb-4bb8-bbdc-0f79c7365876
relation.isAuthorOfPublication6eb41332-af5a-40b7-88ce-1dc5bc1b7880
relation.isAuthorOfPublication98ef47e9-2bf4-43db-b566-342c2ec1ebae
relation.isAuthorOfPublication7a490663-0e4c-4f1e-816c-ca4dc4116319
relation.isAuthorOfPublication04e4223d-be70-4475-bfe3-967250740423
relation.isAuthorOfPublication8798ddeb-36ce-4f12-b5ce-80f0b856c81e
relation.isAuthorOfPublication1754c0cc-4038-445c-9a86-8e9e7a7bf34e
relation.isAuthorOfPublicationebf92f24-012e-45eb-9598-1ae856736f10
relation.isAuthorOfPublication.latestForDiscovery1754c0cc-4038-445c-9a86-8e9e7a7bf34e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022_sensors_Calibration Models for Wine Spirit Volatile Phenols NIR.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format