Publication
PLS-R calibration models for wine spirit volatile phenols prediction by Near-Infrared Spectroscopy
dc.contributor.author | Anjos, O. | |
dc.contributor.author | Caldeira, Ilda | |
dc.contributor.author | Fernandes, Tiago A. | |
dc.contributor.author | Pedro, Soraia | |
dc.contributor.author | Vitória, Cláudia | |
dc.contributor.author | Alves, Sheila Oliveira | |
dc.contributor.author | Catarino, Sofia | |
dc.contributor.author | Canas, Sara | |
dc.date.accessioned | 2022-01-12T12:33:35Z | |
dc.date.available | 2022-01-12T12:33:35Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Near-infrared spectroscopic (NIR) technique was used, for the first time, to predict volatile phenols content, namely guaiacol, 4-methyl-guaiacol, eugenol, syringol, 4-methyl-syringol and 4- allyl-syringol, of aged wine spirits (AWS). This study aimed to develop calibration models for the volatile phenol’s quantification in AWS, by NIR, faster and without sample preparation. Partial least square regression (PLS-R) models were developed with NIR spectra in the near-IR region (12,500–4000 cm−1 ) and those obtained from GC-FID quantification after liquid-liquid extraction. In the PLS-R developed method, cross-validation with 50% of the samples along a validation test set with 50% of the remaining samples. The final calibration was performed with 100% of the data. PLS-R models with a good accuracy were obtained for guaiacol (r2 = 96.34; RPD = 5.23), 4-methyl-guaiacol (r2 = 96.1; RPD = 5.07), eugenol (r2 = 96.06; RPD = 5.04), syringol (r2 = 97.32; RPD = 6.11), 4-methylsyringol (r2 = 95.79; RPD = 4.88) and 4-allyl-syringol (r2 = 95.97; RPD = 4.98). These results reveal that NIR is a valuable technique for the quality control of wine spirits and to predict the volatile phenols content, which contributes to the sensory quality of the spirit beverages. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | ANJOS, O [et al.] (2021) - PLS-R calibration models for wine spirit volatile phenols prediction by Near-Infrared Spectroscopy. Sensors.Vol. 22, n.º 1, p. 286. DOI 10.3390/s22010286 | |
dc.identifier.doi | 10.3390/s22010286 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.11/7843 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | NIR | pt_PT |
dc.subject | Calibration models | pt_PT |
dc.subject | PLS-R | pt_PT |
dc.subject | Volatile phenols | pt_PT |
dc.subject | Aged wine spirit | pt_PT |
dc.title | PLS-R calibration models for wine spirit volatile phenols prediction by Near-Infrared Spectroscopy | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.issue | 1 | pt_PT |
oaire.citation.startPage | 286 | pt_PT |
oaire.citation.title | Sensors | pt_PT |
oaire.citation.volume | 22 | pt_PT |
person.familyName | Anjos | |
person.familyName | caldeira | |
person.familyName | Fernandes | |
person.familyName | Pedro | |
person.familyName | Vitória | |
person.familyName | Oliveira Alves | |
person.familyName | Catarino | |
person.familyName | de Almeida Lopes Canas | |
person.givenName | Ofélia | |
person.givenName | ilda | |
person.givenName | Tiago | |
person.givenName | Soraia Inês | |
person.givenName | Cláudia | |
person.givenName | Sheila Cristina de | |
person.givenName | Sofia | |
person.givenName | Sara Maria | |
person.identifier | 3719814 | |
person.identifier | B-9350-2 | |
person.identifier.ciencia-id | C21D-D8C7-3037 | |
person.identifier.ciencia-id | 1915-F5F5-C6AD | |
person.identifier.ciencia-id | 8810-5C8A-08D0 | |
person.identifier.ciencia-id | 5011-C0CC-7186 | |
person.identifier.ciencia-id | 4719-8EA0-063A | |
person.identifier.ciencia-id | 3E1A-CDB8-3D21 | |
person.identifier.ciencia-id | 7212-C53B-0F02 | |
person.identifier.ciencia-id | EB11-791E-0118 | |
person.identifier.orcid | 0000-0003-0267-3252 | |
person.identifier.orcid | 0000-0003-2151-2008 | |
person.identifier.orcid | 0000-0002-3374-612X | |
person.identifier.orcid | 0000-0002-7934-7183 | |
person.identifier.orcid | 0000-0003-2222-9685 | |
person.identifier.orcid | 0000-0002-9963-4673 | |
person.identifier.orcid | 0000-0002-6223-4377 | |
person.identifier.orcid | 0000-0002-9781-6481 | |
person.identifier.rid | G-2808-2012 | |
person.identifier.rid | B-4023-2016 | |
person.identifier.rid | B-6777-2013 | |
person.identifier.rid | D-2752-2013 | |
person.identifier.scopus-author-id | 23395659700 | |
person.identifier.scopus-author-id | 8056539300 | |
person.identifier.scopus-author-id | 24449123500 | |
person.identifier.scopus-author-id | 57193863077 | |
person.identifier.scopus-author-id | 8354919700 | |
person.identifier.scopus-author-id | 6507398291 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | df9191ae-0bbb-4bb8-bbdc-0f79c7365876 | |
relation.isAuthorOfPublication | 6eb41332-af5a-40b7-88ce-1dc5bc1b7880 | |
relation.isAuthorOfPublication | 98ef47e9-2bf4-43db-b566-342c2ec1ebae | |
relation.isAuthorOfPublication | 7a490663-0e4c-4f1e-816c-ca4dc4116319 | |
relation.isAuthorOfPublication | 04e4223d-be70-4475-bfe3-967250740423 | |
relation.isAuthorOfPublication | 8798ddeb-36ce-4f12-b5ce-80f0b856c81e | |
relation.isAuthorOfPublication | 1754c0cc-4038-445c-9a86-8e9e7a7bf34e | |
relation.isAuthorOfPublication | ebf92f24-012e-45eb-9598-1ae856736f10 | |
relation.isAuthorOfPublication.latestForDiscovery | 1754c0cc-4038-445c-9a86-8e9e7a7bf34e |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2022_sensors_Calibration Models for Wine Spirit Volatile Phenols NIR.pdf
- Size:
- 1.96 MB
- Format:
- Adobe Portable Document Format