Repository logo
 
Publication

Using deep neural networks for forecasting cell congestion on LTE networks: a simple approach

dc.contributor.authorTorres, Pedro
dc.contributor.authorMarques, Hugo
dc.contributor.authorMarques, Paulo
dc.contributor.authorRodriguez, Jonathan
dc.date.accessioned2018-05-09T14:02:19Z
dc.date.available2018-05-09T14:02:19Z
dc.date.issued2018
dc.description“This is a pre-copyedited version of a contribution published in Marques P., Radwan A., Mumtaz S., Noguet D., Rodriguez J., Gundlach M. (eds) Cognitive Radio Oriented Wireless Networks published by Springer. The definitive authenticated version is available online via https://doi.org/10.1007/978-3-319-76207-4_23 "pt_PT
dc.description.abstractPredicting short-term cellular load in LTE networks is of great importance for mobile operators as it assists in the efficient managing of network resources. Based on predicted behaviours, the network can be intended as a proactive system that enables reconfiguration when needed. Basically, it is the concept of self-organizing networks that ensures the requirements and the quality of service. This paper uses a dataset, provided by a mobile network operator, of collected downlink throughput samples from one cell in an area where cell congestion usually occurs and a Deep Neural Network (DNN) approach to perform short-term cell load forecasting. The results obtained indicate that DNN performs better results when compared to traditional approaches.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationTORRES, Pedro [et.al.] (2018) - Using deep neural networks for forecasting cell congestion on LTE networks: a simple approach. In: MARQUES, P. [et al.] (eds) - Cognitive radio oriented wireless networks. CrownCom 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: Springer. ISBN 978-3-319-76206-7. Vol. 228, p. 276-286pt_PT
dc.identifier.doihttps://doi.org/10.1007/978-3-319-76207-4_23pt_PT
dc.identifier.isbn978-3-319-76206-7
dc.identifier.urihttp://hdl.handle.net/10400.11/6075
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relation17787 POCI-01-0247-FEDER-MUSCLESpt_PT
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-319-76207-4_23pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/pt_PT
dc.subjectLTEpt_PT
dc.subjectSONpt_PT
dc.subjectMachine learningpt_PT
dc.subjectDeep learningpt_PT
dc.subjectForecastingpt_PT
dc.titleUsing deep neural networks for forecasting cell congestion on LTE networks: a simple approachpt_PT
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage286pt_PT
oaire.citation.startPage276pt_PT
oaire.citation.titleCognitive Radio Oriented Wireless Networkspt_PT
person.familyNameBAPTISTA TORRES
person.familyNameMarques
person.familyNameMarques
person.givenNamePEDRO MIGUEL
person.givenNameHugo
person.givenNamePaulo
person.identifierK-5331-2015
person.identifier.ciencia-id2711-E707-519C
person.identifier.ciencia-id6313-B906-ED27
person.identifier.orcid0000-0003-4835-5022
person.identifier.orcid0000-0001-5762-4912
person.identifier.orcid0000-0002-1788-651X
person.identifier.scopus-author-id56261515100
person.identifier.scopus-author-id25225486200
person.identifier.scopus-author-id7006399225
rcaap.rightsrestrictedAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication9d9ad49f-3c45-4a99-be21-7f13965c2628
relation.isAuthorOfPublication5f8d6aed-47b9-4fa9-9205-dcbe5b6beae9
relation.isAuthorOfPublication5e02e874-d8e8-4a4d-9fe6-64741ff6bba7
relation.isAuthorOfPublication.latestForDiscovery5e02e874-d8e8-4a4d-9fe6-64741ff6bba7

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DNN_Forecasting_Cell_Congestion_v1.0_A.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: