Repository logo
 
Publication

Pedestrian detection with lidar technology in smart-city deployments - challenges and recommendations

dc.contributor.authorTorres, Pedro
dc.contributor.authorMarques, Hugo
dc.contributor.authorMarques, Paulo
dc.date.accessioned2023-03-22T15:13:49Z
dc.date.available2023-03-22T15:13:49Z
dc.date.issued2023
dc.description.abstractAbstract: This paper describes a real case implementation of an automatic pedestrian-detection solution, implemented in the city of Aveiro, Portugal, using affordable LiDAR technology and open, publicly available, pedestrian-detection frameworks based on machine-learning algorithms. The presented solution makes it possible to anonymously identify pedestrians, and extract associated information such as position, walking velocity and direction in certain areas of interest such as pedestrian crossings or other points of interest in a smart-city context. All data computation (3D point-cloud processing) is performed at edge nodes, consisting of NVIDIA Jetson Nano and Xavier platforms, which ingest 3D point clouds from Velodyne VLP-16 LiDARs. High-performance real-time computation is possible at these edge nodes through CUDA-enabled GPU-accelerated computations. The MQTT protocol is used to interconnect publishers (edge nodes) with consumers (the smartcity platform). The results show that using currently affordable LiDAR sensors in a smart-city context, despite the advertising characteristics referring to having a range of up to 100 m, presents great challenges for the automatic detection of objects at these distances. The authors were able to efficiently detect pedestrians up to 15 m away, depending on the sensor height and tilt. Based on the implementation challenges, the authors present usage recommendations to get the most out of the used technologies.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationTORRES, Pedro, MARQUES, Hugo, MARQUES, Paulo (2023) - Pedestrian detection with lidar technology in smart-city deployments - challenges and recommendations. ISSN 2073-431X. Vol.12, p.3-16.pt_PT
dc.identifier.doihttps://doi.org/10.3390/computers12030065pt_PT
dc.identifier.issn2073-431X
dc.identifier.urihttp://hdl.handle.net/10400.11/8434
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherCumputers - MDPIpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectPedestrian detectionpt_PT
dc.subjectLidarpt_PT
dc.subject3D point cloudspt_PT
dc.subjectROSpt_PT
dc.subjectSmart citiespt_PT
dc.subjectTraffic mobilitypt_PT
dc.titlePedestrian detection with lidar technology in smart-city deployments - challenges and recommendationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage16pt_PT
oaire.citation.startPage3pt_PT
oaire.citation.volumeVol 12pt_PT
person.familyNameBAPTISTA TORRES
person.familyNameMarques
person.familyNameMarques
person.givenNamePEDRO MIGUEL
person.givenNameHugo
person.givenNamePaulo
person.identifierK-5331-2015
person.identifier.ciencia-id2711-E707-519C
person.identifier.ciencia-id6313-B906-ED27
person.identifier.orcid0000-0003-4835-5022
person.identifier.orcid0000-0001-5762-4912
person.identifier.orcid0000-0002-1788-651X
person.identifier.scopus-author-id56261515100
person.identifier.scopus-author-id25225486200
person.identifier.scopus-author-id7006399225
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication9d9ad49f-3c45-4a99-be21-7f13965c2628
relation.isAuthorOfPublication5f8d6aed-47b9-4fa9-9205-dcbe5b6beae9
relation.isAuthorOfPublication5e02e874-d8e8-4a4d-9fe6-64741ff6bba7
relation.isAuthorOfPublication.latestForDiscovery5e02e874-d8e8-4a4d-9fe6-64741ff6bba7

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
computers-12-00065.pdf
Size:
6.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: