Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 8 of 8
  • Machine learning techniques with ECG and EEG data: an exploratory study
    Publication . Ponciano, Vasco Rafael Gaspar; Pires, Ivan M.; Ribeiro, Fernando Reinaldo; Garcia, Nuno M.; Villasana, María Vanessa; Lameski, Petre; Zdravevski, Eftim
    Electrocardiography (ECG) and electroencephalography (EEG) are powerful tools in medicine for the analysis of various diseases. The emergence of affordable ECG and EEG sensors and ubiquitous mobile devices provides an opportunity to make such analysis accessible to everyone. In this paper, we propose the implementation of a neural network-based method for the automatic identification of the relationship between the previously known conditions of older adults and the different features calculated from the various signals. The data were collected using a smartphone and low-cost ECG and EEG sensors during the performance of the timed-up and go test. Different patterns related to the features extracted, such as heart rate, heart rate variability, average QRS amplitude, average R-R interval, and average R-S interval from ECG data, and the frequency and variability from the EEG data were identified. A combination of these parameters allowed us to identify the presence of certain diseases accurately. The analysis revealed that the different institutions and ages were mainly identified. Still, the various diseases and groups of diseases were difficult to recognize, because the frequency of the different diseases was rare in the considered population. Therefore, the test should be performed with more people to achieve better results.
  • Identification of diseases based on the use of inertial sensors: a systematic review
    Publication . Ponciano, Vasco Rafael Gaspar; Pires, Ivan M.; Ribeiro, Fernando Reinaldo; Marques, Gonçalo Santos; Villasana, María Vanessa; Garcia, Nuno M.; Zdravevski, Eftim; Spinsante, Susanna
    Inertial sensors are commonly embedded in several devices, including smartphones, and other specific devices. This type of sensors may be used for different purposes, including the recognition of different diseases. Several studies are focused on the use of accelerometer for the automatic recognition of different diseases, and it may powerful the different treatments with the use of less invasive and painful techniques for patients. This paper is focused in the systematic review of the studies available in the literature for the automatic recognition of different diseases with accelerometer sensors. The disease that is the most reliably detectable disease using accelerometer sensors, available in 54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods implements for the recognition of Parkinson’s disease reported an accuracy of 94%. Other diseases are recognized in less number that will be subject of further analysis in the future.
  • Android library for recognition of activities of daily living: implementation considerations, challenges, and solutions
    Publication . Pires, Ivan M.; Teixeira, M.C.C.; Pombo, Nuno; Garcia, Nuno M.; Flórez-Revuelta, Francisco; Spinsante, Susanna; Goleva, Rossitza; Zdravevski, Eftim
    Off-the-shelf-mobile devices have several sensors available onboard that may be used for the recognition of Activities of Daily Living (ADL) and the environments where they are performed. This research is focused on the development of Ambient Assisted Living (AAL) systems, using mobile devices for the acquisition of the different types of data related to the physical and physiological conditions of the subjects and the environments. Mobile devices with the Android Operating Systems are the least expensive and exhibit the biggest market while providing a variety of models and onboard sensors. Objective: This paper describes the implementation considerations, challenges and solutions about a framework for the recognition of ADL and the environments, provided as an Android library. The framework is a function of the number of sensors available in different mobile devices and utilizes a variety of activity recognition algorithms to provide a rapid feedback to the user. Methods: The Android library includes data fusion, data processing, features engineering and classification methods. The sensors that may be used are the accelerometer, the gyroscope, the magnetometer, the Global Positioning System (GPS) receiver and the microphone. The data processing includes the application of data cleaning methods and the extraction of features, which are used with Deep Neural Networks (DNN) for the classification of ADL and environment. Throughout this work, the limitations of the mobile devices were explored and their effects have been minimized. Results: The implementation of the Android library reported an overall accuracy between 58.02% and 89.15%, depending on the number of sensors used and the number of ADL and environments recognized. Compared with the results available in the literature, the performance of the library reported a mean improvement of 2.93%, and they do not differ at the maximum found in prior work, that based on the Student’s t-test. Conclusion: This study proves that ADL like walking, going upstairs and downstairs, running, watching TV, driving, sleeping and standing activities, and the bedroom, cooking/kitchen, gym, classroom, hall, living room, bar, library and street environments may be recognized with the sensors available in off-the-shelf mobile devices. Finally, these results may act as a preliminary research for the development of a personal digital life coach with a multi-sensor mobile device commonly used daily.
  • Thought on food: a systematic review of current approaches and challenges for food intake detection
    Publication . Neves, Paulo Alexandre; Simões, João; Costa, Ricardo; Pimenta, Luís; Gonçalves, Norberto Jorge; Albuquerque, Carlos; Cunha, Carlos; Zdravevski, Eftim; Lameski, Petre; Garcia, Nuno M.; Pires, Ivan M.
    Nowadays, individuals have very stressful lifestyles, affecting their nutritional habits. In the early stages of life, teenagers begin to exhibit bad habits and inadequate nutrition. Likewise, other people with dementia, Alzheimer’s disease, or other conditions may not take food or medicine regularly. Therefore, the ability to monitor could be beneficial for them and for the doctors that can analyze the patterns of eating habits and their correlation with overall health. Many sensors help accurately detect food intake episodes, including electrogastrography, cameras, microphones, and inertial sensors. Accurate detection may provide better control to enable healthy nutrition habits. This paper presents a systematic review of the use of technology for food intake detection, focusing on the different sensors and methodologies used. The search was performed with a Natural Language Processing (NLP) framework that helps screen irrelevant studies while following the PRISMA methodology. It automatically searched and filtered the research studies in different databases, including PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Then, the manual analysis selected 30 papers based on the results of the framework for further analysis, which support the interest in using sensors for food intake detection and nutrition assessment. The mainly used sensors are cameras, inertial, and acoustic sensors that handle the recognition of food intake episodes with artificial intelligence techniques. This research identifies the most used sensors and data processing methodologies to detect food intake.
  • Is the timed-up and go test feasible in mobile devices? A systematic review
    Publication . Ponciano, Vasco Rafael Gaspar; Pires, Ivan M.; Ribeiro, Fernando Reinaldo; Marques, Gonçalo Santos; Garcia, Nuno M.; Pombo, Nuno; Spinsante, Susanna; Zdravevski, Eftim
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.
  • Experimental study for determining the parameters required for detecting ECG and EEG related diseases during the timed-up and go test
    Publication . Ponciano, Vasco Rafael Gaspar; Pires, Ivan M.; Ribeiro, Fernando Reinaldo; Villasana, María Vanessa; Teixeira, M.C.C.; Zdravevski, Eftim
    The use of smartphones, coupled with different sensors, makes it an attractive solution for measuring different physical and physiological features, allowing for the monitoring of various parameters and even identifying some diseases. The BITalino device allows the use of different sensors, including Electroencephalography (EEG) and Electrocardiography (ECG) sensors, to study different health parameters. With these devices, the acquisition of signals is straightforward, and it is possible to connect them using a Bluetooth connection. With the acquired data, it is possible to measure parameters such as calculating the QRS complex and its variation with ECG data to control the individual’s heartbeat. Similarly, by using the EEG sensor, one could analyze the individual’s brain activity and frequency. The purpose of this paper is to present a method for recognition of the diseases related to ECG and EEG data, with sensors available in off-the-shelf mobile devices and sensors connected to a BITalino device. The data were collected during the elderly’s experiences, performing the Timed-Up and Go test, and the different diseases found in the sample in the study. The data were analyzed, and the following features were extracted from the ECG, including heart rate, linear heart rate variability, the average QRS interval, the average R-R interval, and the average R-S interval, and the EEG, including frequency and variability. Finally, the diseases are correlated with different parameters, proving that there are relations between the individuals and the different health conditions.
  • Mobile computing technologies for health and mobility assessment: research design and results of the ttmed up and go test in older adults
    Publication . Ponciano, Vasco Rafael Gaspar; Pires, Ivan M.; Ribeiro, Fernando Reinaldo; Villasana, María Vanessa; Crisóstomo, Rute; Teixeira, M.C.C.; Zdravevski, Eftim
    Due to the increasing age of the European population, there is a growing interest in performing research that will aid in the timely and unobtrusive detection of emerging diseases. For such tasks, mobile devices have several sensors, facilitating the acquisition of diverse data. This study focuses on the analysis of the data collected from the mobile devices sensors and a pressure sensor connected to a Bitalino device for the measurement of the Timed-Up and Go test. The data acquisition was performed within different environments from multiple individuals with distinct types of diseases. Then this data was analyzed to estimate the various parameters of the Timed-Up and Go test. Firstly, the pressure sensor is used to extract the reaction and total test time. Secondly, the magnetometer sensors are used to identify the total test time and different parameters related to turning around. Finally, the accelerometer sensor is used to extract the reaction time, total test time, duration of turning around, going time, return time, and many other derived metrics. Our experiments showed that these parameters could be automatically and reliably detected with a mobile device. Moreover, we identified that the time to perform the Timed-Up and Go test increases with age and the presence of diseases related to locomotion.
  • Recognition of activities of daily living and environments using acoustic sensors embedded on mobile devices
    Publication . Pires, Ivan M.; Marques, Gonçalo Santos; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco; Spinsante, Susanna; Teixeira, M.C.C.; Zdravevski, Eftim
    The identification of Activities of Daily Living (ADL) is intrinsic with the user’s environment recognition. This detection can be executed through standard sensors present in every-day mobile devices. On the one hand, the main proposal is to recognize users’ environment and standing activities. On the other hand, these features are included in a framework for the ADL and environment identification. Therefore, this paper is divided into two parts—firstly, acoustic sensors are used for the collection of data towards the recognition of the environment and, secondly, the information of the environment recognized is fused with the information gathered by motion and magnetic sensors. The environment and ADL recognition are performed by pattern recognition techniques that aim for the development of a system, including data collection, processing, fusion and classification procedures. These classification techniques include distinctive types of Artificial Neural Networks (ANN), analyzing various implementations of ANN and choosing the most suitable for further inclusion in the following different stages of the developed system. The results present 85.89% accuracy using Deep Neural Networks (DNN) with normalized data for the ADL recognition and 86.50% accuracy using Feedforward Neural Networks (FNN) with non-normalized data for environment recognition. Furthermore, the tests conducted present 100% accuracy for standing activities recognition using DNN with normalized data, which is the most suited for the intended purpose.