Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Identification of diseases based on the use of inertial sensors: a systematic reviewPublication . Ponciano, Vasco Rafael Gaspar; Pires, Ivan M.; Ribeiro, Fernando Reinaldo; Marques, Gonçalo Santos; Villasana, María Vanessa; Garcia, Nuno M.; Zdravevski, Eftim; Spinsante, SusannaInertial sensors are commonly embedded in several devices, including smartphones, and other specific devices. This type of sensors may be used for different purposes, including the recognition of different diseases. Several studies are focused on the use of accelerometer for the automatic recognition of different diseases, and it may powerful the different treatments with the use of less invasive and painful techniques for patients. This paper is focused in the systematic review of the studies available in the literature for the automatic recognition of different diseases with accelerometer sensors. The disease that is the most reliably detectable disease using accelerometer sensors, available in 54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods implements for the recognition of Parkinson’s disease reported an accuracy of 94%. Other diseases are recognized in less number that will be subject of further analysis in the future.
- Is the timed-up and go test feasible in mobile devices? A systematic reviewPublication . Ponciano, Vasco Rafael Gaspar; Pires, Ivan M.; Ribeiro, Fernando Reinaldo; Marques, Gonçalo Santos; Garcia, Nuno M.; Pombo, Nuno; Spinsante, Susanna; Zdravevski, EftimThe number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.
- Recognition of activities of daily living and environments using acoustic sensors embedded on mobile devicesPublication . Pires, Ivan M.; Marques, Gonçalo Santos; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco; Spinsante, Susanna; Teixeira, M.C.C.; Zdravevski, EftimThe identification of Activities of Daily Living (ADL) is intrinsic with the user’s environment recognition. This detection can be executed through standard sensors present in every-day mobile devices. On the one hand, the main proposal is to recognize users’ environment and standing activities. On the other hand, these features are included in a framework for the ADL and environment identification. Therefore, this paper is divided into two parts—firstly, acoustic sensors are used for the collection of data towards the recognition of the environment and, secondly, the information of the environment recognized is fused with the information gathered by motion and magnetic sensors. The environment and ADL recognition are performed by pattern recognition techniques that aim for the development of a system, including data collection, processing, fusion and classification procedures. These classification techniques include distinctive types of Artificial Neural Networks (ANN), analyzing various implementations of ANN and choosing the most suitable for further inclusion in the following different stages of the developed system. The results present 85.89% accuracy using Deep Neural Networks (DNN) with normalized data for the ADL recognition and 86.50% accuracy using Feedforward Neural Networks (FNN) with non-normalized data for environment recognition. Furthermore, the tests conducted present 100% accuracy for standing activities recognition using DNN with normalized data, which is the most suited for the intended purpose.