Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • A numerical study of non-linear crack tip parameters
    Publication . Antunes, F.V.; Branco, R.; Correia, Luís M.; Ramalho, Armando
    Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i) LEFM concepts are applicable to the problem under study; ii) the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii) the ΔKeff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv) the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v) without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.
  • Plasticity induced crack closure: a sensitivity analysis
    Publication . Correia, Luís M.; Antunes, F.V.; Ramalho, Armando
    Plasticity induced crack closure (PICC) is closely linked to the monotonic and reversed plastic deformation occurring at the crack tip. The objective of the paper is to identify the different physical and numerical parameters affecting PICC, and develop a sensitivity analysis to quantify their relative importance. The main parameters affecting PICC are the load parameters, the yield stress, the size of finite elements and the numerical parameter considered to quantify PICC. The numerical predictions should be independent of numerical parameters, therefore further work is required to optimize the numerical models