Logo do repositório
 
Publicação

Indoor microclimate monitoring and forecasting: Public Sector building use case

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorSudniks, Ruslans
dc.contributor.authorZiemelis, Arturs
dc.contributor.authorNikitenko, Agris
dc.contributor.authorSoares, V.N.G.J.
dc.contributor.authorSupe, Andis
dc.date.accessioned2025-09-10T16:07:32Z
dc.date.available2025-09-10T16:07:32Z
dc.date.issued2025
dc.description.abstractThis research aims to demonstrate a machine learning (ML) algorithm-based indoor air quality (IAQ) monitoring and forecasting system for a public sector building use case. Such a system has the potential to automate existing heating/ventilation systems, therefore reducing energy consumption. One of Riga Technical University’s campus buildings, equipped with around 128 IAQ sensors, is used as a test bed to create a digital shadow including a comparison of five ML-based data prediction tools. We compare the IAQ data prediction loss using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) error metrics based on real sensor data. Gated Recurrent Unit (GRU) and Kolmogorov–Arnold Networks (KAN) prove to be the most accurate models regarding the prediction error. Also, GRU proved to be the most efficient model regarding the required computation time.eng
dc.identifier.citationSUDNIKS, R. [et al.] (2025) - Indoor microclimate monitoring and forecasting: Public Sector building use case. Information. Vol. 16:2, 121. DOI: 10.3390/ info16020121
dc.identifier.doi10.3390/info16020121
dc.identifier.issn2078-2489
dc.identifier.urihttp://hdl.handle.net/10400.11/10289
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI AG
dc.relation.ispartofInformation
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectIndoor air quality
dc.subjectSensor network
dc.subjectInternet of Things
dc.subjectDigital shadow
dc.subjectData forecasting
dc.subjectMachine learning algorithms
dc.titleIndoor microclimate monitoring and forecasting: Public Sector building use caseeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.titleInformation
oaire.citation.volume16
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.identifiera4GD8aoAAAAJ
person.identifier.ciencia-id5B19-E130-E382
person.identifier.orcid0000-0002-8057-5474
relation.isAuthorOfPublicationa17d4ff5-1ff3-4dcc-b180-319e7ff3961d
relation.isAuthorOfPublication.latestForDiscoverya17d4ff5-1ff3-4dcc-b180-319e7ff3961d

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
information-16-00121.pdf
Tamanho:
3.66 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
2.02 KB
Formato:
Item-specific license agreed upon to submission
Descrição: