Publication
Técnicas de visão computacional para a deteção de contentores de resíduos
dc.contributor.author | Valente, Miguel | |
dc.contributor.author | Silva, Hélio | |
dc.contributor.author | Caldeira, J.M.L.P. | |
dc.contributor.author | Soares, V.N.G.J. | |
dc.contributor.author | Gaspar, Pedro D. | |
dc.date.accessioned | 2020-02-24T12:32:57Z | |
dc.date.available | 2020-02-24T12:32:57Z | |
dc.date.issued | 2019 | |
dc.description | “© © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” | pt_PT |
dc.description.abstract | O trabalho apresentado neste artigo resulta de uma investigação preliminar que visa a utilização de técnicas de visão computacional para substituir o método atual de identificação de contentores de resíduos via identificação por radiofrequência. Comparativamente ao método atual, esta abordagem é mais ágil e diminui os recursos necessários para implementação. A abordagem aqui discutida é centrada no uso de redes neuronais convolucionais, especificamente a rede YOLO. Utilizando este método de identificação foi atingido uma precisão de deteção e classificação de 92% dos contentores de resíduos. | pt_PT |
dc.description.abstract | Abstract — The work presented in this article is the result of a prelaminar investigation that aims at using computer vision techniques to replace the current method of performing detection of waste contains via radio-frequency identification. Comparatively to the current method, this approach is more agile and diminishes the resources needed for an implementation. The approach discussed is focused on the use of convolutional neural networks, specifically the network YOLO. Using this method of identification, it was attained an accuracy of 92% of the waste containers. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | VALENTE, Miguel [et al.] (2019) - Técnicas de visão computacional para a deteção de contentores de resíduos. In Iberian Conference on Information Systems and Technologies, 14, Coimbra, 19-22 June. [S.l.] : IEEE, p. 1-4 | pt_PT |
dc.identifier.doi | 10.23919/CISTI.2019.8760862 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.11/6932 | |
dc.language.iso | por | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Institute of Electrical and Electronics Engineers | pt_PT |
dc.relation.publisherversion | https://ieeexplore.ieee.org/abstract/document/8760862 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Contentores de residuos | pt_PT |
dc.subject | Identificação por radiofrequência | pt_PT |
dc.subject | Visão computacional | pt_PT |
dc.subject | Redes neuronais convolucionais | pt_PT |
dc.subject | Deteção de objectos | pt_PT |
dc.subject | YOLO | pt_PT |
dc.subject | Waste containers | pt_PT |
dc.subject | Radio-frequency identification | pt_PT |
dc.subject | Computational vision | pt_PT |
dc.subject | Convulutional neural networks | pt_PT |
dc.subject | Object detection | pt_PT |
dc.subject | YOLO | pt_PT |
dc.title | Técnicas de visão computacional para a deteção de contentores de resíduos | pt_PT |
dc.title.alternative | Computer vision approaches to waste containers detection | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Coimbra | pt_PT |
oaire.citation.endPage | 4 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 14th Iberian Conference on Information Systems and Technologies (CISTI) | pt_PT |
person.familyName | Silva | |
person.familyName | Caldeira | |
person.familyName | Gaspar | |
person.givenName | Hélio | |
person.givenName | João | |
person.givenName | Pedro Dinis | |
person.identifier | a4GD8aoAAAAJ | |
person.identifier.ciencia-id | A91B-85B8-C27E | |
person.identifier.ciencia-id | 5B19-E130-E382 | |
person.identifier.ciencia-id | 6111-9F05-2916 | |
person.identifier.orcid | 0000-0003-3327-5142 | |
person.identifier.orcid | 0000-0001-5830-3790 | |
person.identifier.orcid | 0000-0002-8057-5474 | |
person.identifier.orcid | 0000-0003-1691-1709 | |
person.identifier.rid | N-3016-2013 | |
person.identifier.scopus-author-id | 27067580500 | |
person.identifier.scopus-author-id | 57419570900 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 03d0b0ef-a999-4e1a-8f6d-7d49f0e088a5 | |
relation.isAuthorOfPublication | 8eebc97c-5334-4f29-b7ee-71c4c436aa69 | |
relation.isAuthorOfPublication | a17d4ff5-1ff3-4dcc-b180-319e7ff3961d | |
relation.isAuthorOfPublication | ebfd94b1-21cd-4670-8626-e82f2b1c3436 | |
relation.isAuthorOfPublication.latestForDiscovery | a17d4ff5-1ff3-4dcc-b180-319e7ff3961d |