Repository logo
 
Publication

Neural networks applied to discriminate botanical origin of honeys

dc.contributor.authorAnjos, Ofélia
dc.contributor.authorIglesias, Carla
dc.contributor.authorPeres, Maria de Fátima
dc.contributor.authorMartínez, Javier
dc.contributor.authorGarcía, Ángela
dc.contributor.authorTaboada, Javier
dc.date.accessioned2017-07-22T16:14:31Z
dc.date.available2017-07-22T16:14:31Z
dc.date.issued2015
dc.description.abstractThe aim of this work is develop a tool based on neural networks to predict the botanical origin of honeys using physical and chemical parameters. The managed database consists of 49 honey samples of 2 different classes: monofloral (almond, holm oak, sweet chestnut, eucalyptus, orange, rosemary, lavender, strawberry trees, thyme, heather, sunflower) and multifloral. The moisture content, electrical conductivity, water activity, ashes content, pH, free acidity, colorimetric coordinates in CIELAB space (L(∗), a(∗), b(∗)) and total phenols content of the honey samples were evaluated. Those properties were considered as input variables of the predictive model. The neural network is optimised through several tests with different numbers of neurons in the hidden layer and also with different input variables. The reduced error rates (5%) allow us to conclude that the botanical origin of honey can be reliably and quickly known from the colorimetric information and the electrical conductivity of honey.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationANJOS, O. [et al.] (2015) - Neural networks applied to discriminate botanical origin of honeys. ISSN 0308-8146. 175. P. 128-136.pt_PT
dc.identifier.doi10.1016/j.foodchem.2014.11.121pt_PT
dc.identifier.issn0308-8146
dc.identifier.urihttp://hdl.handle.net/10400.11/5611
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectHoneypt_PT
dc.subjectPhysical–chemical parameterspt_PT
dc.subjectBotanical originpt_PT
dc.subjectNeural networkspt_PT
dc.subjectOverfittingpt_PT
dc.subjectClassification problempt_PT
dc.titleNeural networks applied to discriminate botanical origin of honeyspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage136pt_PT
oaire.citation.startPage128pt_PT
oaire.citation.titleFood Chemistrypt_PT
oaire.citation.volume175pt_PT
person.familyNameAnjos
person.familyNamePratas Peres
person.givenNameOfélia
person.givenNameMaria de Fátima
person.identifier.ciencia-idC21D-D8C7-3037
person.identifier.ciencia-idB219-0A97-8517
person.identifier.orcid0000-0003-0267-3252
person.identifier.orcid0000-0002-0010-2811
person.identifier.ridG-2808-2012
person.identifier.scopus-author-id23395659700
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationdf9191ae-0bbb-4bb8-bbdc-0f79c7365876
relation.isAuthorOfPublicationff5b37e4-b060-4945-9c69-e4c64ec8b7b9
relation.isAuthorOfPublication.latestForDiscoveryff5b37e4-b060-4945-9c69-e4c64ec8b7b9

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2015_Neural networks applied to discriminate botanical origin.pdf
Size:
554.75 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.02 KB
Format:
Item-specific license agreed upon to submission
Description: