ESTCB - Artigos em revistas com arbitragem científica
Permanent URI for this collection
Browse
Browsing ESTCB - Artigos em revistas com arbitragem científica by Field of Science and Technology (FOS) "Engenharia e Tecnologia"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Determination of dynamic elastic properties of 3D-printed nylon 12CF using impulse excitation of vibrationPublication . Garcia, Pedro F.; Ramalho, Armando; Vasco, Joel; Rubén, Rui; Capela, Carlos; MDPIMaterial Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic behavior often rely on expensive equipment and time-consuming procedures. The aim of this study is to evaluate the applicability of the impulse excitation of vibration (IEV) in characterizing the dynamic mechanical properties of a 3D-printed composite material. Tensile tests were also performed to compare quasi-static properties with the dynamic ones obtained through IEV. The tested material, Nylon 12CF, contains 35% short carbon fibers by weight and is commercially available from Stratasys. It is used in the fused deposition modeling (FDM) process, a Material Extrusion technology, and exhibits anisotropic mechanical properties. This is further reinforced by the filament deposition process, which affects the mechanical response of printed parts. Young’s modulus obtained in the direction perpendicular to the deposition plane (E33), obtained via IEV, was 14.77% higher than the value in the technical datasheet. Comparing methods, the Young’s modulus obtained in the deposition plane, in an inclined direction of 45 degrees in relation to the deposition direction (E45), showed a 22.95% difference between IEV and tensile tests, while Poisson’s ratio in the deposition plane (v12) differed by 6.78%. This data is critical for designing parts subject to demanding service conditions, and the results obtained (orthotropic elastic properties) can be used in finite element simulation software. Ultimately, this work reinforces the potential of the IEV method as an accessible and consistent alternative for characterizing the anisotropic properties of components produced through additive manufacturing (AM).
- Dynamic elastic properties of E-Glass randomly oriented fiber reinforced SR GreenPoxy composite - Experimental and numerical analysisPublication . Ramalho, Armando; Gaspar, Marcelo; Correia, Mário; Vasco, Joel; Capela, Carlos; Rubén, RuiIn this article, the in-plane dynamic elastic properties of an E-glass randomly oriented fiber-reinforced SR GreenPoxy 56 composite were obtained based on the procedure specified in the ASTM E1876-21 standard. The experimental frequencies and the ones predicted by the simulation of the experimental procedure using a finite element analysis developed in the Patran/Nastran 2021 package were used in an iterative algorithm using sensitivity analysis to improve the first approaches of the dynamic elastic properties obtained by the impulse excitation technique. These experimental results are compared with the ones obtained by the 2D Short Fiber Composite model of the E-glass randomly oriented fiber-reinforced SR GreenPoxy 56 composite, developed in the Patran/Nastran 2021 software.
- Evacuation of Lisbon’s Baixa-Chiado subway station in case of firePublication . Borralho, Tiago; Rodrigues, João Paulo; Calmeiro dos Santos, CristinaIt is essential to ensure that any building has conditions for a safe evacuation of its occupants. This aspect is essential in subway stations, where evacuation has to be carried out in an upward way, and usually correspond to large structures constituting a single fire compartment. Baixa-Chiado subway station, in Lisbon, Portugal, was selected for studying the evacuation in case of fire, due to its depth, high number of passengers that frequent the station and the existing of two intersecting train lines. A calculation of evacuation time was calculated and the way of evacuation studied, in different fire scenarios, number and location of occupants. The numerical simulations used Fire Dynamics Simulator and Pathfinder softwares, the first for fire spreading and the second for evacuation analysis. The importance of smoke control system, and its rapid activation in case of fire, was highlighted by the results obtained. In situations where this did not occur, there was a significant worsening in the evacuation of the occupants. It was estimated the incapacitation of a significant number of occupants, considering the levels registered for the fractional effective dose. The station’s architectural constraints proved to be a crucial factor in the results of the study. This article highlights important results applicable to subway stations around the world.
- Using drones to estimate and reduce the risk of wildfire propagation in wildland–urban interfacesPublication . Santos, Osvaldo; Santos, NatérciaForest fires have become one of the most destructive natural disasters worldwide, causing catastrophic losses, sometimes with the loss of lives. Therefore, some countries have created legislation to enforce mandatory fuel management within buffer zones in the vicinity of buildings and roads. The purpose of this study is to investigate whether inexpensive off-the-shelf drones equipped with standard RGB cameras could be used to detect the excess of trees and vegetation within those buffer zones. The methodology used in this study was the development and evaluation of a complete system, which uses AI to detect the contours of buildings and the services provided by the CHAMELEON bundles to detect trees and vegetation within buffer zones. The developed AI model is effective at detecting the building contours, with a mAP50 of 0.888. The article analyses the results obtained from two use cases: a road surrounded by dense forest and an isolated building with dense vegetation nearby. The main conclusion of this study is that off-the-shelf drones equipped with standard RGB cameras can be effective at detecting non-compliant vegetation and trees within buffer zones. This can be used to manage biomass within buffer zones, thus helping to reduce the risk of wildfire propagation in wildland–urban interfaces.
