Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Genetic diversity and hybridization in the two species Inga ingoides and Inga edulis: potential applications for agroforestry in the Peruvian AmazonPublication . Rollo, Alexandr; Lojka, Bohdan; Honys, David; Mandák, Bohumil; Wong, Julio A. Chia; Santos, Carmen; Costa, Rita; Quintela-Sabarís, Celestino; Ribeiro, M.M.A.Key message: Slash and burn practices affect tropical forests. Our results showed strong introgression between Inga ingoides and Inga edulis in the species contact area Interspecific hybridization could be sought to improve yield or tolerance to flooding and further increase the economic potential of the poorly drained Amazonian soils and minimize deforestation. Context: Inga species are important components of tropical American forests, as well as a local food source. Little is known about the genetic structure of these species; in particular the amount of introgression among species remains unknown. Aims: We assessed the degree of genetic divergence and introgression among populations of I. ingoides (Rich.) Willd. and I. edulis Mart. (Fabaceae) from three Peruvian Amazon tributary rivers. Methods: Using microsatellite markers we determined the genetic structure of populations using an analysis ofmolecular variance and a Bayesian analysis of population structure in areas affected by seasonal river fluctuations and in ‘terra firme’ forests. Results: Overall genetic differentiation was weak. The degree of genetic variation was similar in the two species. A putatively strong introgression was detected between the two species and an intense gene flow was identified among populations. This indicates that an intense gene flow had happened in the past, leading also to a small differentiation among populations within species. Conclusion: Selection of natural hybrids or artificial hybridization between I. edulis and I. ingoides could be applied to improve legume size and yield in the later species, while maintaining tolerance to flooding. Improved I. ingoides could be used in multipurpose agroforestry on open areas along the rivers, instead of using the usual slash and burn practice to create inland open areas.
- Genetic structure and pod morphology of Inga edulis cultivated vs. wild populations from the Peruvian AmazonPublication . Rollo, Alexandr; Ribeiro, M.M.A.; Costa, Rita; Santos, Carmen; Clavo P., Zoyla M.; Mandak, Bohumil; Kalousová, Marie; Vebrová, Hana; Chuqulin, Edilberto; Torres, Sergio G.; Aguilar, Roel M.V.; Hlavsa, Tomáš; Lojka, BohdanResearch Highlights: This study assesses the genetic diversity and structure of the ice-cream-bean (Inga edulis Mart.) (Fabaceae), in wild and cultivated populations from the Peruvian Amazon. This research also highlights the importance of protecting the biodiversity of the forest in the Peruvian Amazon, to preserve the genetic resources of species and allow further genetic improvement. Background and Objectives: Ice-cream-bean is one of the most commonly used species in the Amazon region for its fruits and for shading protection of other species (e.g.: cocoa and coffee plantations). Comprehensive studies about the impact of domestication on this species’ genetic diversity are needed, to find the best conservation and improvement strategies. Materials and Methods: In the current study, the genetic structure and diversity were assessed by genotyping 259 trees, sampled in five wild and 22 cultivated I. edulis populations in the Peruvian Amazon, with microsatellite markers. Pod length was measured in wild and cultivated trees. Results: The average pod length in cultivated trees was significantly higher than that in wild trees. The expected genetic diversity and the average number of alleles was higher in the wild compared to the cultivated populations, thus, a loss of genetic diversity was confirmed in the cultivated populations. The cultivated trees in the Loreto region had the highest pod length and lowest allelic richness, nevertheless the wild populations’ genetic structure was not clearly differentiated (significantly different) from that of the cultivated populations. Conclusions: A loss of genetic diversity was confirmed in the cultivated populations. The species could have been simultaneously domesticated in multiple locations, usually from local origin. The original I. edulis Amazonian germplasm should be maintained. Cultivated populations’ new germplasm influx from wild populations should be undertaken to increase genetic diversity.
- Genetic variability in wild and domestic populations of Inga edulis Mart. (Fabaceae) in Peruvian AmazonPublication . Rollo, Alexandr; Ribeiro, M.M.A.; Lojka, Bohdan; Honys, David; Sánchez Diáz, Henri Dante; Chia Wong, Julio Alberto; Vebrová, Hana; Costa, RitaHuman activity in the Peruvian Amazon causes native vegetation fragmentation into smaller units resulting on the increase of agricultural systems. Understanding the level, the structure and the origin of morphologic within and among populations variation is essential for planning better management strategies aimed at sustainable use and conservation of Inga edulis Mart. species. We evaluated the genetic variability in wild and domestic population to unfold cultivation changes over the species genetic resources. We have studied 400 adult trees: 200 cultivated on arable land and 200 wild growing in untouched lowland rain forest. The individuals were randomly selected. Sampling sites were selected and defined on the basis of the geographical coordinates: longitude, latitude and altitude. Phenotypic variation was monitored using the proposed descriptor of qualitative and quantitative features (e.g., weight of hundred seeds). For each individual a voucher specimen was kept. The total genomic DNA was extracted from young leaves, conserved in silica gel, with INVITEK, Invisorb ®Spin Plant Mini Kit. Samples were then genotyped with five microsatellite (SSR) loci. One locus (Pel5) was cross-transferred, developed previously for Pithecellobium elegans. The remaining four loci (Inga03, 05, 08, 33) were previously developed for the species. Polymerase chain reaction (PCR) was made using a Biometra® T1 Thermocycler using the following profile: 95 °C for 2 min; 95°C for 15 s, 55/59 °C for 30 s, 72 °C for 30 s, 30 cycles; 72 °C for 15 min. The PCR products were fluorescently labelled. The visualization of fragments was carried out according to standard protocols on genetic analyser, ABI PRISM® 310 (Applied Biosystems), using ABI GENESCAN and GENOTYPER software. The phenotypic and genotypic results of wild versus domestic populations are under evaluation to verify if cultivation is altering the allelic variation considering that morphology is considerably changed.